Age prediction using scalp Electroencephalography and Deep Learning

Group 37 Dung Truong, Yayu Lin, Yijia Yan

Background

- Goal: Predict age groups using raw EEG with deep learning to investigate the brain developmental level of children and adolescents.
- Traditional brain development evaluation methods include developmental and behavioral screening, and brain imaging evaluation.
- Electroencephalography (EEG):
 - Non-invasive
 - Real-time brain activity monitoring
 - High temporal resolution
- Common EEG analysis method:
 - Event related potentials (ERPs)
 - Spectral analysis
 - Event related spectral perturbation (ERSP)
 - Component analysis

Literature survey

EEG-based age-prediction models as stable and heritable indicators of brain maturational level in children and adolescents. (Vandenbosch, M. et al. (2019) *Human Brain Mapping*)

- Input features: 12-ch EEG power spectra from 2667 subject (851 child)
- Machine learning approach: random forest, support vector machine, and relevance vector machine

	Type of classification	Child	Adolescence	% of correct classification
RF				
	Correct	736	1,768	93.9
	Incorrect	115	48	
RVM				
	Correct	748	1,792	95.2
	Incorrect	91	36	

RF = random forest; RVM = relevance vector machine.

Literature survey

Predicting age from brain EEG signals -- a machine learning approach. (Zoubi, O. et al. (2018) *Frontiers in Aging Neuroscience*)

- 468 subjects (mean age: 34.8 years, 297 females), extracted EEG features from particular channels and bands
- Machine learning approach: Elastic Net (ENET), Support Vector Regression (SVR), Random Forest (RF), extreme gradient boosting tree (XgbTree), and Gaussian Process with Polynomial Kernel (gaussprPoly)

Deep Learning on EEG - A rising interest

Our Project

- Inspired by the approach of van Putten et al. (2018)
 - Trained a Convolutional Neural Network (CNN) to predict biological sex on scalp resting state EEG
 - > 80% accuracy
 - Applied visualization technique on trained model to generate scientific hypothesis
- Train CNN to predict child (5-11) vs. adolescent (11-23)

Dataset

- Healthy Brain Network Project
 - Alexander et al. (2017)
 - EEG, MRI, Behavioral data
 - 1574 subjects
 - Ages: min 5, max 23, mean 10
- Publicly available:

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_ network/

Data preprocessing

- Pre-processing following (Putten et al., 2018) using EEGLAB toolbox (Delorme & Makeig, 2014):
 - Remove baseline
 - Filter 0.25-25Hz
 - Resample 128Hz
 - Re-reference to average mastoids
 - Epoching: eye-closed, 3 40-second blocks. Ignored first and last 3 seconds of each block
 - clean_rawdata ASR (Mullen et al. 2015)
 - Sub-select 24 channels
 - Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6, O1, Cz
 - Segment 2-second non-overlapping windows
 - ~ 81 samples per subject
- No feature extraction was done

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Time

Channel

### Data selection

- 10-30-60 split
  - 885 subjects for training -> 71,381 samples
  - 492 subjects for validation -> 39,868 samples
  - 197 subjects for testing -> 15,925 samples



### Deep Learning models

#### Original model



van Putten et al. (2018)

Layer (type)	Input Shape	Param #	Tr. Param #
Conv2d-1	[1, 1, 24, 256]	1,000	1,000
ReLU-2	[1, 100, 22, 254]	0	0
MaxPool2d-3	[1, 100, 22, 254]	0	0
Dropout-4	[1, 100, 11, 127]	0	0
Conv2d-5	[1, 100, 11, 127]	90,100	90,100
ReLU-6	[1, 100, 9, 125]	0	0
MaxPool2d-7	[1, 100, 9, 125]	0	0
Dropout-8	[1, 100, 4, 62]	0	0
Conv2d-9	[1, 100, 4, 62]	180,300	180,300
ReLU-10	[1, 300, 3, 60]	0	0
MaxPool2d-11	[1, 300, 3, 60]	0	0
Dropout-12	[1, 300, 1, 30]	0	0
Conv2d-13	[1, 300, 1, 30]	630,300	630,300
ReLU-14	[1, 300, 1, 24]	0	0
MaxPool2d-15	[1, 300, 1, 24]	0	0
Dropout-16	[1, 300, 1, 23]	0	0
Conv2d-17	[1, 300, 1, 23]	90,100	90,100
Conv2d-18	[1, 100, 1, 21]	30,100	30,100
Flatten-19	[1, 100, 1, 19]	0	0
Linear-20	[1, 1900]	11,679,744	11,679,744
Linear-21	[1, 6144]	12,290	12,290

_____

### Deep Learning models

#### **1D** Convolution

Layer (type)	Output Shape	Param #	Tr. Param #
Convld-1	[1, 64, 254]	4,672	4,672
ReLU-2	[1, 64, 254]	0	0
Convld-3	[1, 64, 252]	12,352	12,352
ReLU-4	[1, 64, 252]	0	0
Dropout-5	[1, 64, 252]	0	0
MaxPool1d-6	[1, 64, 126]	0	0
Flatten-7	[1, 8064]	0	0
Linear-8	[1, 100]	806,500	806,500
ReLU-9	[1, 100]	0	0
Linear-10	[1, 2]	202	202
Total params: 823,726 Trainable params: 823, Non-trainable params:	726 0		

https://machinelearningmastery.com/cnn-models-for-human-activity-recogni tion-time-series-classification/

#### EEGNet

Layer (type)	Output Shape	Param #	Tr. Param #
Conv2d-1	[1, 4, 28, 197]	260	260
BatchNorm2d-2	[1, 4, 28, 197]	8	8
Conv2d-3	[1, 8, 5, 197]	192	192
BatchNorm2d-4	[1, 8, 5, 197]	16	16
ELU-5	[1, 8, 5, 197]	0	0
AvgPool2d-6	[1, 8, 2, 50]	0	0
Dropout-7	[1, 8, 2, 50]	0	0
SeparableConv2d-8	[1, 8, 4, 37]	192	192
BatchNorm2d-9	[1, 8, 4, 37]	16	16
ELU-10	[1, 8, 4, 37]	0	0
AvgPool2d-11	[1, 8, 1, 5]	0	0
Dropout-12	[1, 8, 1, 5]	0	0
Flatten-13	[1, 40]	0	0
Linear-14	[1, 2]	82	82
Potal params: 766 Prainable params: 766 Non-trainable params: 0			

Vernon J Lawhern et al. (2018)

### Deep Learning models

#### LSTM and ConvLSTM





#### Traditional Machine Learning

(as baseline):

- Decision Tree
- AdaBoost

Fig. 3. The Conv-LSTM Structure

### Experiment

- Python 3.7.10, PyTorch 1.3.1, Tensorflow 1.4.1 & Keras, Scikit
- Single NVIDIA V100 SMX2 GPU (32 GB)
- During training, the validation data were used to assess models' performance and to inform stopping rules
- Adamax optimizer with default hyperparameters (learning rate = 0.002,  $\beta$ 1 = 0.9,  $\beta$ 2 = 0.999,  $\epsilon$  = 1e-08)
- Batch size was set at 256
- 50+ training epochs

### Results

Classifiers	Test Accuracy
Putten et al.	74.37%
Conv1D	71.45%
EEGNet	55.24%*
(Conv)LSTM	55.24%*
AdaBoost	61.41%
Decision Tree	60.88%
Majority voting ⁺ (Putten)	80.71%





* Models predicted all 0s

⁺ Majority voting: use 40 segments per subject to predict subject age group

Loss and accuracy vs. training epoch for training and validation set for Putten et al. (pink) and Conv1D (blue)

#### Acc

### Next steps

- Expand the problem to a regression task
- Add Random Forest and/or Relevant Vector Machine models to compare with (Vandenbosch et al., 2019)'s result
- If time allowed, we would also like to apply visualization technique used in Putten et al. (2018) to investigate discriminative features between two age groups learned by the model
  - This would demonstrate the benefit of training Deep Learning on raw EEG data for scientific hypothesis generation

### References

- Vernon J Lawhern et al 2018 J. Neural Eng. 15 056013
- Roy, Y., et al., Deep learning-based electroencephalography analysis: a systematic review. Journal of Neural Engineering, 2019. 16 051001.
- Van Putten, M. J. A. M., Olbrich, S. and Arns, M., Predicting sex from brain rhythms with deep learning. Scientific Reports, 2018.
  8.
- Alexander, L., Escalera, J., Ai, L. et al., An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific Data, 2017. 4, 170181.
- Delorme, A. and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 2004. 134(1): pp. 9-21.
- Mullen, T. R., Kothe, C. A. E., Chi, Y. M., Ojeda, A., Kerth, T., Makeig, S., et al., Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans. Bio-Med. Eng, 2015. 62(11), 2553–2567.
- A. Delorme, A. Majumdar, S. Sivagnanam, R. Martinez-Cancino, K. Yoshimoto and S. Makeig, "The Open EEGLAB portal," 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), 2019, pp. 1142-1145, doi: 10.1109/NER.2019.8717114.
- Vandenbosch, M. M. L. J. Z., van 't Ent, D., Boomsma, D. I., Anokhin, A. P., & Smit, D. J. A. (2019). EEG-based age-prediction models as stable and heritable indicators of brain maturational level in children and adolescents. Human Brain Mapping, 40(6), 1919–1926.
- Zoubi, O. Al, Wong, C. K., Kuplicki, R. T., Yeh, H. wen, Mayeli, A., Refai, H., ... Bodurka, J. (2018). Predicting age from brain EEG signals-a machine learning approach. Frontiers in Aging Neuroscience, 10(JUL), 1–12.

## **THANK YOU!**