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Background 
Monocular Depth Estimation: The task of 
estimating scene depth using a single image

Importance:

● Autonomous Driving
● Robotics
● Drones
● Power Consumption Reduction



Background 

Existing depth estimation methods: 
- LiDAR & RGB-D Cameras
Pros: Accuracy & Reliability
Cons: Energy consumption, cost and sparsity on 
prediction



Literature 

● Structure from motion(SfM) [1]  Stereo vision matching [2]
○ Feature correspondences and geometric constraints between images
○ Need calibrated camera/stereo camera setup
○ Sparse depth map 

● Depth Sensors
○ Large size, high power consumption
○ RGB-D: Limited measure range, light condition sensitivity
○ LIDAR: Sparse depth map

● Depth map prediction from a single image [3]
○ Supervised methods, regression problem
○ Single Image
○ CNN
○ Dense depth map



● Depth and Ego-Motion from Video [4]
○ Unsupervised method
○ Sequence of images
○ Image reconstruction
○ Dense depth map

● Geometry to the Rescue [5]
○ Semi-supervised method
○ Stereo image pairs
○ Image reconstruction
○ Dense depth map

● DPT (Vision Transformer for Dense Prediction) [6]
○ Supervised learning
○ Attention mechanism
○ Strong global receptive fields 
○ Dense depth map

● AdaBins (Depth Estimation using Adaptive Bins) [7]
○ Supervised learning
○ Attention mechanism: Simplified Vision 

transformer
○ Quantization technique
○ Modularized depth prediction structure
○ Dense depth map



How does Machine Learning help?

● Simpler setup
○ Smaller size
○ Low energy consumption
○ Don’t need camera intrinsic parameters

● Denser depth prediction

● End-to-end pipeline
○ Faster prediction
○ Simpler architecture

● Data-driven
○ Prior knowledge encoding
○ Fusion of various representations



Dataset: NYU-Depth-V2
- Focuses on Indoor Environments

- Basements, bathrooms, bedrooms, 
kitchens, offices etc.

- Collects ground truth depth by RGB-D 
camera

- Vs. LIDAR

NYU v2 consists of: 

1. Labeled Dataset (Fine depth details) (2.8 GB) 

2. Raw Dataset (Less fine details) (428 GB)

- 200x Greater than Labeled



Feature Extraction

AdaBins Model

Mini Vision TransformerEfficientNet B5



Models (DPT Model)
- Details:



Models (AdaBins)
- Details:



Models
● Model tweaking at 4 upsampling decoding 

layers

● Compared vs. AdaBins fully trained & DPT

#0 
(baseline)

#1 #2 #3 #4 #5

Drop Out Rate 0.0 0.3 0.5 0.0 0.3 0.5

Batch 
Normalization

True True True False False False



Results/Observations

Baseline



Results/Observations



Results/Observations



Next Steps

● Train on more data

● Train on more concentrated data (i.e. Living Rooms only)
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