Vision (Monocular) Depth Estimation

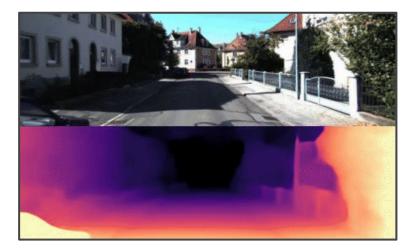
Group 31: Siyuan Zhu & Linus Grasel

Background

Monocular Depth Estimation: The task of estimating scene depth using a single image

Importance:

- Autonomous Driving
- Robotics
- Drones
- Power Consumption Reduction



Background

Existing depth estimation methods: - LiDAR & RGB-D Cameras *Pros*: Accuracy & Reliability *Cons*: Energy consumption, cost and sparsity on prediction

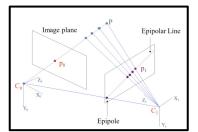
Tesla is no longer using radar sensors \bigcirc in Model 3 and Model Y vehicles built in North America

Kirsten Korosec @kirstenkorosec / 3:02 PM PDT • May 25, 2021

Comment

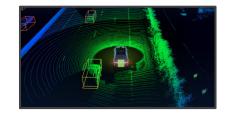
Literature

- <u>Structure from motion(SfM)</u> [1] <u>Stereo vision matching</u> [2]
 - Feature correspondences and geometric constraints between images
 - Need calibrated camera/stereo camera setup
 - Sparse depth map

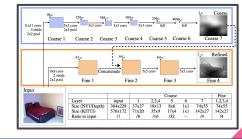


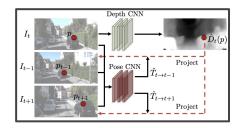
Depth Sensors

- Large size, high power consumption
- RGB-D: Limited measure range, light condition sensitivity
- LIDAR: Sparse depth map

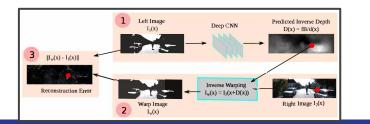


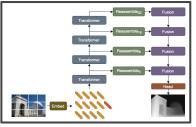
- <u>Depth map prediction from a single image</u> [3]
 - \circ Supervised methods, regression problem
 - Single Image
 - CNN
 - Dense depth map



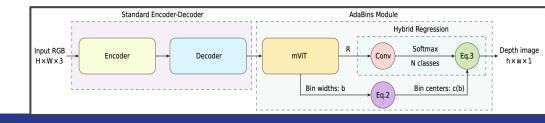


- Depth and Ego-Motion from Video [4]
 - Unsupervised method
 - Sequence of images
 - Image reconstruction
 - Dense depth map
- <u>Geometry to the Rescue</u> [5]
 - Semi-supervised method
 - Stereo image pairs
 - Image reconstruction
 - Dense depth map



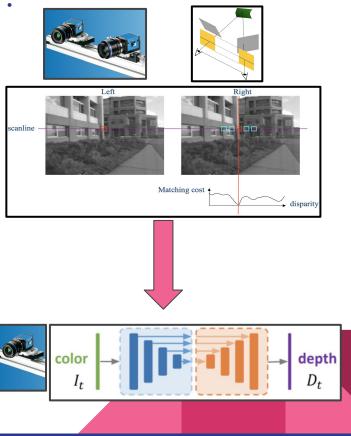


- DPT (Vision Transformer for Dense Prediction) [6]
 - Supervised learning
 - Attention mechanism
 - Strong global receptive fields
 - Dense depth map
 - AdaBins (Depth Estimation using Adaptive Bins) [7]
 - Supervised learning
 - Attention mechanism: Simplified Vision transformer
 - Quantization technique
 - Modularized depth prediction structure
 - Dense depth map



How does Machine Learning help?

- Simpler setup
 - Smaller size
 - Low energy consumption
 - Don't need camera intrinsic parameters
- Denser depth prediction
- End-to-end pipeline
 - Faster prediction
 - Simpler architecture
- Data-driven
 - Prior knowledge encoding
 - Fusion of various representations

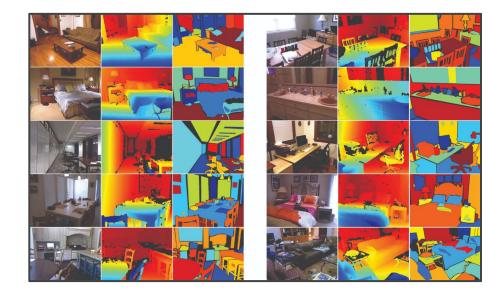


Dataset: NYU-Depth-V2

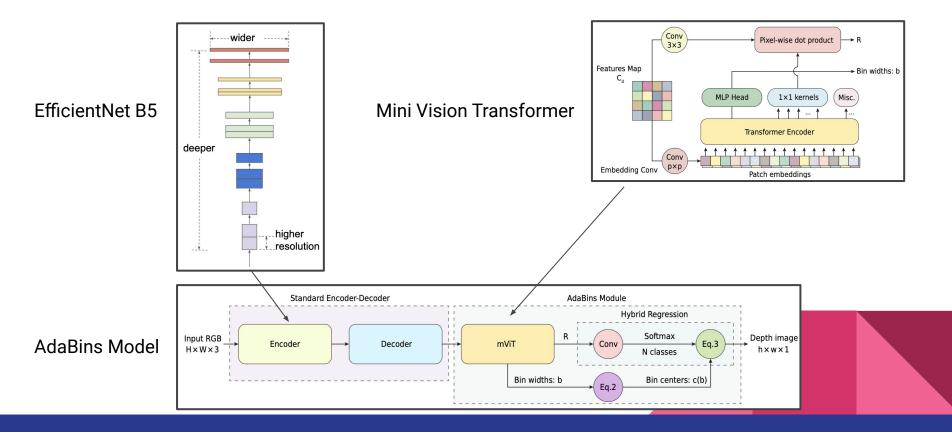
- Focuses on Indoor Environments
 - Basements, bathrooms, bedrooms, kitchens, offices etc.
- Collects ground truth depth by RGB-D camera
 - Vs. LIDAR

NYU v2 consists of:

- 1. Labeled Dataset (Fine depth details) (2.8 GB)
- 2. Raw Dataset (Less fine details) (428 GB)
 - 200x Greater than Labeled

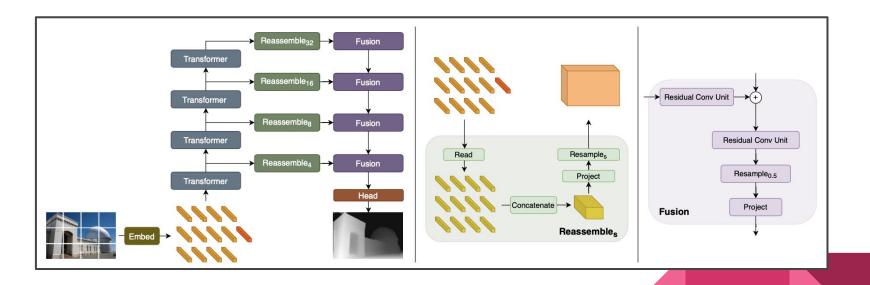


Feature Extraction



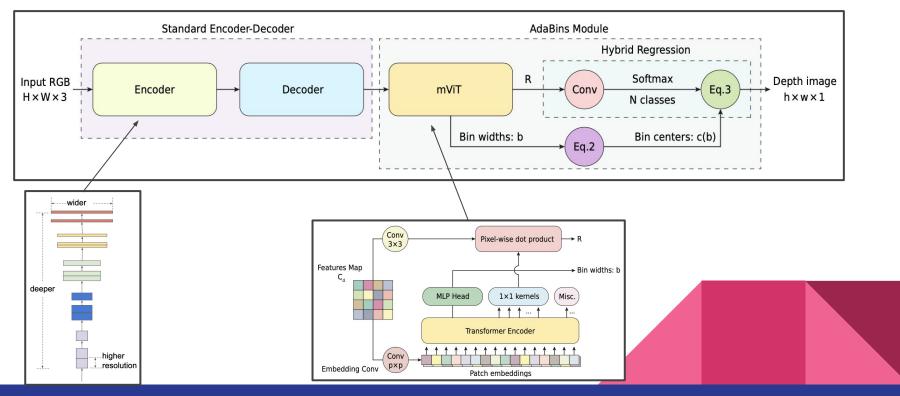
Models (DPT Model)

- Details:



Models (AdaBins)

- Details:



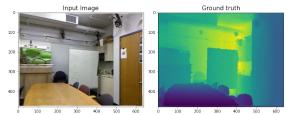
Models

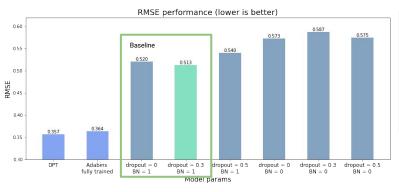
• Model tweaking at 4 upsampling decoding layers

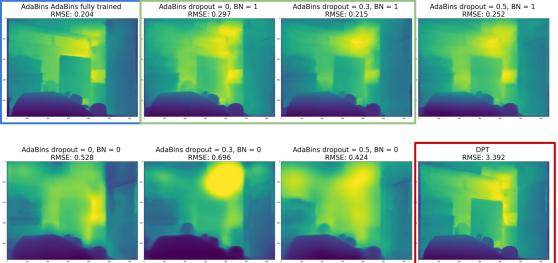
	#0 (baseline)	#1	#2	#3	#4	#5
Drop Out Rate	0.0	0.3	0.5	0.0	0.3	0.5
Batch Normalization	True	True	True	False	False	False

• Compared vs. AdaBins fully trained & DPT

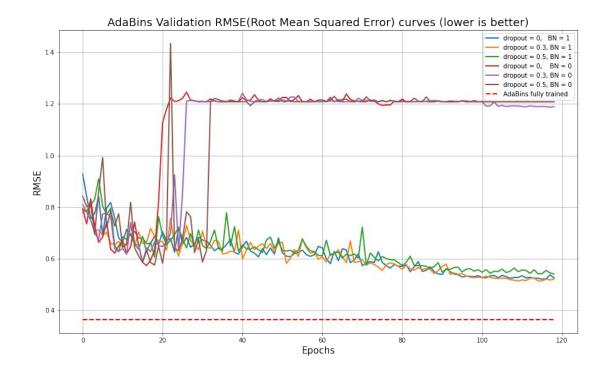
Results/Observations



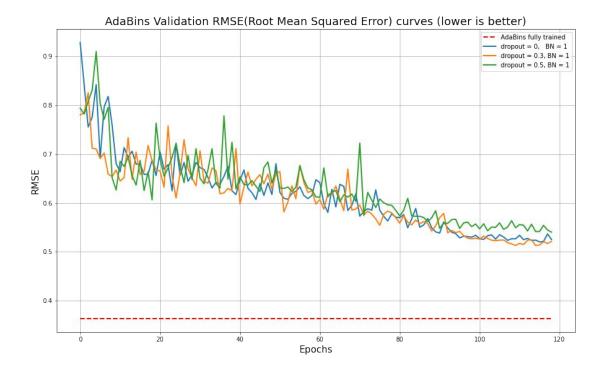




Results/Observations



Results/Observations



Next Steps

- Train on more data
- Train on more concentrated data (i.e. Living Rooms only)

References

[1] Rene Ranftl, Alexey Bochkovskiy and Vladlen Koltun. Vision Transformers for Dense Prediction. [cs.CV] 24 Mar 2021.

[2] S. Ullman, "The interpretation of structure from motion," Proceedings of the Royal Society of London. Series B. Biological Sciences, vol. 203, no. 1153, pp. 405–426, 1979.

[3] "Cnn-slam, keisuke and tombari, federico and laina, iro and navab, nassir," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6243–6252.

[4] J. M. Facil, B. Ummenhofer, H. Zhou, L. Montesano, T. Brox, and J. Civera, "Cam-convs: camera-aware multi-scale convolutions for single-view depth," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2019, pp. 11 826–11 835.

[5] R. Wang, S. M. Pizer, and J.-M. Frahm, "Recurrent neural network for (un-) supervised learning of monocular video visual odometry and depth," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 5555–5564.

[6] P. Chakravarty, P. Narayanan, and T. Roussel, "Gen-slam: Generative modeling for monocular simultaneous localization and mapping," in 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 147–153.

[7] C.Godard,O.MacAodha, and G.J.Brostow, "Unsupervised Monocular depth estimation with left-right consistency," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 270–279.

[8] Chaoqiang Zhao, Qiyu Sun, Chongzhen Zhang, Yang Tang and Feng Qian. Monocular Depth Estimation Based On Deep Learning: An Overview. [cs.CV] 3 Jul 2020.

[9] OpenAl, GPT3, Retrieved from {\it https://openai.com/blog/gpt-3-apps/}

[10] OpenAI, Dall-E, Retrieved from {\it https://openai.com/blog/dall-e/}

[11] NYU Depth Dataset V2, Indoor Segmentation and Support Inference from RGBD Images, Retrieved from {\it https://cs.nyu.edu/~silberman/datasets/nyu/_depth_v2.html}

[12] Bhat, S. F., Alhashim, I., and Wonka, P. Adabins: Depth estimation using adaptive bins. arXiv:2011.14141, 2020.