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● One of the world’s premier coastal 
monitoring teams, located at Scripps
○ Use a variety of survey techniques 

to monitor and model coastal 
climates

● Truck-based mobile LiDAR 
(Light Detection And Ranging)
○ Beach and coastal cliff surveys
○ Supports array of research projects 

including beach morphology, cliff 
erosion, and ocean wave studies

  Background on CCCIA



● Important to identify and label LiDAR returns from wave 
surfaces:

○ Complicate and confound true topological elevation 
measurements of beaches and cliffs

○ Can be used for wave studies of breaking waves and 
white water

● Currently, they are labeled by hand

● Problem Statement:
○ Our goal is to use machine learning to aid in these 

research efforts by classifying LiDAR point returns off of 
the wave surfaces

○ We hope we can create a framework that can be 
extended to classifying more specific categories 
(wave crests, white water, wave type)

  LiDAR Returns from Water
Grayscale by intensity

Water & Land Classification

Scripps Pier



1. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
○ Describes the design of a novel type of neural network (called PointNet) that directly uses point 

clouds. Its applications include (but aren’t limited to): object classification, part segmentation, and 
scene semantic parsing. 

2. Machine Learning in LiDAR 3D point clouds
○ Describes various machine learning framework implementations and experiments for irregularly 

distributed LiDAR point clouds
3. DANCE-NET: Density-aware convolution networks with context encoding for 

airborne LiDAR point cloud classification
○ Outlines using machine learning while emphasizing different characteristics of features of interest in 

the LiDAR point cloud such as density, curvature and roughness.
○ Inspired us to take advantage of the geometry we noticed in our data.

4. Automated Cobble Mapping of a Mixed Sand-Cobble Beach Using a Mobile 
LiDAR System

○ Comparison of machine learning techniques on similar coastal LiDAR dataset to identify beach 
cobbles

○ Co-authors provided dataset and will use successful model for future work

  Literature Review: 



5 Southern California Beaches

○ Blacks Beach, 2 x Torrey Pines, LJ shores, Del Mar
○ Raw Data categorized by 4 features: 

■ X, Y, Z, Intensity
○ Data augmentation to reduce dependency on 

geometry and extend dataset
■ Flip along y axis to simulate east coast beach
■ Rotations about z axis of 90,-90 degrees to 

simulate north/south facing beaches
○ Over 1 billion points before data augmentation 

(1,006,413,610 total)

  Dataset Description

Land
Waves



● Randomly subsample land returns to match 
the number of wave returns

○ Of 1 billion data points, >99% classified as land
○ Significantly increased computational efficiency

● Split Data into 100m alongshore segments 
○ Reduce dependency on coastline geometry
○ 104 ‘segments’ of beach before augmentation

● Normalization
○ XY: minmax normalization (-1 to 1)
○ Z: minmax 0 (sea level) to 1
○ Intensity: 

■ nothing for RF and KNN models
■ Standard deviations above the mean for 

Deep Learning
● Sample weights based on inverse number 

of class members

  Pre-Processing



  Dataset Summary
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Geometrical features

● Water returns have very distinct linear features
● Land returns should be equally spaced clusters
● Leverage positional information from k=40 

nearest neighbors
● R2 value 

○ Find linear fit for X,Y of nearest neighbors
○ R2 gives approximation of how accurate 

the fit is, ie how linear
● Cosine Similarity

○ Sum of cosine similarity of neighbors 
matrices. 

○ More linear matrices have higher sum than 
non linear points

Include intensity3 for assistance in extracting 
nonlinear features

  Feature Engineering



KNN Classifier:

● N_neighbors = 15
● Distance Metric: 

Euclidean

  Model Details: Based on Medina et al. 2021

Quora
https://en.wikipedia.org/wiki/Random_forest

https://www.researchgate.net/publication/331525817_Temporal_Convolutional_Neur
al_Network_for_the_Classification_of_Satellite_Image_Time_Series/figures?lo=1

Deep Learning:

● Two fully connected, dense layers:
○ 1st hidden: 20 neurons, relu activation
○ 2nd hidden: 15 neurons, relu activation
○ Output dimension: 3, softmax

● Loss: Categorical Cross Entropy
● Optimization: adam
● Epochs: 200, batch size: 1000
● Learning rate: 0.001

Random Forest Classifier:

● N_estimators = 20
● Max depth = 20
● Bootstrap samples

https://www.quora.com/What-is-the-difference-between-a-KNN-algorithm-and-a-k-means-algorithm
https://en.wikipedia.org/wiki/Random_forest
https://www.researchgate.net/publication/331525817_Temporal_Convolutional_Neural_Network_for_the_Classification_of_Satellite_Image_Time_Series/figures?lo=1
https://www.researchgate.net/publication/331525817_Temporal_Convolutional_Neural_Network_for_the_Classification_of_Satellite_Image_Time_Series/figures?lo=1


  Result Metrics

K-Nearest Neighbors / Random Forest / Deep Neural Network
Models trained on 5 datasets:

1. ‘torrey’ only
2. ‘torrey’ w/ geometrical augmentations
3. ‘torrey’ + ‘blacks’ + ‘delmar’ + ‘LJshores’ w/ geometrical augmentations
4. ‘torrey’ w/ feature engineering
5. ‘torrey’ w/ feature engineering and geometrical augmentations

Tested twice:

20% Random Test Data Entire Additional Survey 
(‘torreyRFID8’ dataset)

Confusion MatrixAccuracyConfusion MatrixAccuracy

Accuracy Confusion Matrix Visual Inspection



  Results

● Random Forest performs 
best most often

● Trained models perform 
best on same beach

● Feature engineering 
increases model prediction 
accuracy nearly across the 
board

Accuracy Confusion Matrix Visual Inspection



  Results

● Random Forest performs 
best most often

● Trained models perform 
best on same beach

● Feature engineering 
increases model prediction 
accuracy nearly across the 
board

[True land   |   Land classified as waves]
[Waves classified as land  | True waves]

Accuracy Confusion Matrix Visual Inspection



Data Augmentation 
Increases Model Robustness

Failure to classify on ‘East Coast’: ~25% accuracySimple RF: 1 Training Beach, No augmentation

Data augmentation reduces dependency on X (East-West) 
which helps resolve ‘flipped’ classification issue

Increase accuracy on ‘East Coast’: ~80% accuracy

Land 
misclassified 
as waves

Accuracy Confusion Matrix Visual Inspection



● Explore hyperparameter space
● Further expand training data with full datasets & additional surveys

○ Confusion matrices will be best measure of model accuracy because of class imbalance
○ Investigate how wave conditions impact model performance

● Compare methods for normalization (e.g. min/max scaling vs. mean/std)
● Explore more robust error metrics for classification 

(i.e. Precision, Recall, AUC curve etc.)

  Future Work



● Explore hyperparameter space
● Further expand training data with full datasets & additional surveys

○ Confusion matrices will be best measure of model accuracy because of class imbalance
○ Investigate how wave conditions impact model performance

● Compare methods for normalization (e.g. min/max scaling vs. mean/std)
● Explore more robust error metrics for classification 

(i.e. Precision, Recall, AUC curve etc.)
● Modify deep learning model

○ Implement early stopping
○ Smooth out accuracy and loss curves

CCCIA field crew will decide on best model

  Future Work (beyond class report)

Accuracy

Loss



- Buscombe, D. & Carini, R. J. A Data-Driven Approach to Classifying Wave Breaking in Infrared Imagery. Remote Sensing 11, 859 (2019).
- Eadi Stringari, C., Harris, D. L. & Power, H. A novel machine learning algorithm for tracking remotely sensed waves in the surf zone. 

Coastal Engineering 147, (2019).
- Eadi Stringari, C., Veras Guimarães, P., Filipot, J.-F., Leckler, F. & Duarte, R. Deep neural networks for active wave breaking classification. 

Scientific Reports 11, 3604 (2021).
- Kim, J., Kim, J., Kim, T., Huh, D. & Caires, S. Wave-Tracking in the Surf Zone Using Coastal Video Imagery with Deep Neural Networks. 

Atmosphere 11, 304 (2020).
- Krishna Moorthy, S. M., Calders, K., Vicari, M. B. & Verbeeck, H. Improved Supervised Learning-Based Approach for Leaf and Wood 

Classification From LiDAR Point Clouds of Forests. IEEE Transactions on Geoscience and Remote Sensing 58, 3057–3070 (2020).
- Matsumoto, H. & Young, A. P. Automated Cobble Mapping of a Mixed Sand-Cobble Beach Using a Mobile LiDAR System. Remote Sensing 

10, 1253 (2018).
- Medina, F. Patricia, and Randy Paffenroth. “Machine Learning in LiDAR 3D Point Clouds.” ArXiv:2101.09318 [Cs], Jan. 2021. arXiv.org, 

http://arxiv.org/abs/2101.09318.
- Qi, Charles R., et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation.” ArXiv:1612.00593 [Cs], Apr. 2017. 

arXiv.org, http://arxiv.org/abs/1612.00593.
- Sturdivant EJ, Lentz EE, Thieler ER, Farris AS, Weber KM, Remsen DP, et al. UAS-SfM for Coastal Research: Geomorphic Feature 

Extraction and Land Cover Classification from High-Resolution Elevation and Optical Imagery. Remote Sensing. 2017 Oct;9(10):1020. 
- Xiang Li, Lingjing Wang, Mingyang Wang, Congcong Wen, Yi Fang, “DANCE-NET: Density-Aware Convolution Networks with Context 

Encoding for Airborne LiDAR Point Cloud Classification.” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 166, Aug. 2020, pp. 
128–39. www.sciencedirect.com, doi:10.1016/j.isprsjprs.2020.05.023. 
(https://www.sciencedirect.com/science/article/pii/S0924271620301490)

  References

http://arxiv.org/abs/2101.09318
http://arxiv.org/abs/1612.00593
https://www.sciencedirect.com/science/article/pii/S0924271620301490

