Point Classification on Beach Survey LiDAR Point Clouds

Group 27: Austin Barnes, Hannah Walker, Ray Young

Background on CCCIA

- One of the world's premier coastal monitoring teams, located at Scripps
 - Use a variety of survey techniques Ο to monitor and model coastal climates
- Truck-based mobile LiDAR (Light Detection And Ranging)
 - Beach and coastal cliff surveys 0
 - Supports array of research projects Ο including beach morphology, cliff erosion, and ocean wave studies

center for

UC San Diego

Three Years of Field Surveys Identify Relationship between Waves and Coastal Cliff Erosion

Study shows that waves and rainfall are important parts of the erosion process, providing a new opportunity to improve forecasts Scripps Institution of Oceanography at UC San Diego researchers have .

Read More

LiDAR Returns from Water

- Important to identify and label LiDAR returns from wave surfaces:
 - Complicate and confound true topological elevation measurements of beaches and cliffs
 - Can be used for wave studies of breaking waves and white water
- Currently, they are labeled by hand
- Problem Statement:
 - Our goal is to use machine learning to aid in these research efforts by classifying LiDAR point returns off of the wave surfaces
 - We hope we can create a framework that can be extended to classifying more specific categories (wave crests, white water, wave type)

Grayscale by intensity

Water & Land Classification

Literature Review:

- 1. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
 - Describes the design of a novel type of neural network (called PointNet) that directly uses point clouds. Its applications include (but aren't limited to): object classification, part segmentation, and scene semantic parsing.
- 2. Machine Learning in LiDAR 3D point clouds
 - Describes various machine learning framework implementations and experiments for irregularly distributed LiDAR point clouds
- 3. DANCE-NET: Density-aware convolution networks with context encoding for airborne LiDAR point cloud classification
 - Outlines using machine learning while emphasizing different characteristics of features of interest in the LiDAR point cloud such as density, curvature and roughness.
 - Inspired us to take advantage of the geometry we noticed in our data.
- 4. Automated Cobble Mapping of a Mixed Sand-Cobble Beach Using a Mobile LiDAR System
 - Comparison of machine learning techniques on similar coastal LiDAR dataset to identify beach cobbles
 - Co-authors provided dataset and will use successful model for future work

Dataset Description

5 Southern California Beaches

- Blacks Beach, 2 x Torrey Pines, LJ shores, Del Mar
- Raw Data categorized by 4 features:
 - X, Y, Z, Intensity
- Data augmentation to reduce dependency on geometry and extend dataset
 - Flip along y axis to simulate east coast beach
 - Rotations about z axis of 90,-90 degrees to simulate north/south facing beaches
- Over 1 billion points before data augmentation (1,006,413,610 total)

Pre-Processing

- Randomly subsample land returns to match the number of wave returns
 - Of 1 billion data points, >99% classified as land
 - Significantly increased computational efficiency
- Split Data into 100m alongshore segments
 - Reduce dependency on coastline geometry
 - 104 'segments' of beach before augmentation
- Normalization
 - XY: minmax normalization (-1 to 1)
 - Z: minmax 0 (sea level) to 1
 - Intensity:
 - nothing for RF and KNN models
 - Standard deviations above the mean for Deep Learning
- Sample weights based on inverse number of class members

Dataset Summary

Feature Engineering

Geometrical features

- Water returns have very distinct linear features
- Land returns should be equally spaced clusters
- Leverage positional information from k=40 nearest neighbors
- R² value
 - Find linear fit for X,Y of nearest neighbors
 - R² gives approximation of how accurate the fit is, ie how linear
- Cosine Similarity
 - Sum of cosine similarity of neighbors matrices.
 - More linear matrices have higher sum than non linear points

Include intensity³ for assistance in extracting nonlinear features

Model Details: Based on Medina et al. 2021

KNN Classifier:

- N_neighbors = 15
- Distance Metric: Euclidean

Quora

Random Forest Classifier: Deep Learning:

- N_estimators = 20
- Max depth = 20
- Bootstrap samples

• Two fully connected, dense layers:

- 1st hidden: 20 neurons, relu activation
- 2nd hidden: 15 neurons, relu activation
- Output dimension: 3, softmax
- Loss: Categorical Cross Entropy
- Optimization: adam
- Epochs: 200, batch size: 1000
- Learning rate: 0.001

Result Metrics

Results

- Random Forest performs best most often
- Trained models perform best on same beach
- Feature engineering increases model prediction accuracy nearly across the board

Confusion Matrix Visual Inspection Accuracy Training K-Nearest Neighbors (KNN) Random Forest (RF) Deep Neural Network (DNN) Augmentation Testing Dataset(s) accuracy: 0.9963135199120656 accuracy: 0.9029968787799328 accuracy: 0.9772 20% of confusion matrix: confusion matrix: confusion matrix: dataset [51799 6158] [57806 145] [57270 832] [5310 54956] [291 60028] [1869 58245] torrev NA accuracy: 0.8953210995990746 accuracy:0.8120210727969349 accuracy: 0.6771507397845549 confusion matrix: confusion matrix: confusion matrix: torreyRFID [186559 22294] [196640 12287] [186145 22891] [21413 187268] [66213 142460] [111916 96602] accuracy: 0.8539621181202434 accuracy: 0.9791261520250275 accuracy: 0.9291 20% of confusion matrix: confusion matrix: confusion matrix: dataset [197328 34779] [229006 2755] [219878 12539] flipY, rot 90, rot [34281 206503] [7120 234199] [20982 219465] torrev -90 accuracy: 0.799453457682488 accuracy: 0.7485632183908046 accuracy: 0.510621380707645 confusion matrix: confusion matrix: confusion matrix: torreyRFID [165129 43724] [138219 70817] [180061 28866] [40011 168670] [76134 132539] [133525 74993] accuracy: 0.8263269645028746 accuracy: 0.8306001431418722 accuracy: 0.8747 20% of confusion matrix: confusion matrix: confusion matrix: dataset [528382 1225531 [522853 121343] [597203 52233] torrey, LJshores. flipY, rot 90, rot 95469 6204601 [93451 623190] [80463 645950] Mode blacks, -90 accuracy: 0.3858081018551783 accuracy: 0.6748539272030651 accuracy: 0.5806698055820325 delmar confusion matrix: confusion matrix: confusion matrix: torreyRFID 161088 46890 1 [171404 37523] [146982 62054] 174497] [33386 [98258 110415] [113039 95479] accuracy: 0.9101274709658865 accuracy: 0.9971421324088949 accuracy: 0.9941 20% of confusion matrix: confusion matrix: confusion matrix: dataset [53499 4465] [58018 107] [57991 214] torrey. [6160 54099] [231 59914] [485 59526] NA feature accuracy: 0.6622305138976037 accuracy: 0.8820670891472311 accuracy: 0.8871671455938698 engineering confusion matrix: confusion matrix: confusion matrix: torreyRFID [194364 14489] [200765 8162] [190699 18337] [34752 173929] [38957 169716] [122700 85818] accuracy: 0.893207948554741 accuracy: 0.9885368225247315 accuracy: 0.9614 20% of confusion matrix: confusion matrix: confusion matrix: dataset [210082 22097] [230281 1320] [224098 7619] torrey, [28404 212308] [4103 237376] flipY, rot 90, rot [10641 230506] feature -90 accuracy: 0.8719540229885058 accuracy: 0.8464556179856012 accuracy: 0.6973541146773831 engineering confusion matrix: confusion matrix: confusion matrix: torrevRFID 183838 250151 [190195 18732] [152311 56725] [39095 169586] [34740 173933] [69646 138872]

Results

- Random Forest performs best most often
- Trained models perform best on same beach
- Feature engineering increases model prediction accuracy nearly across the board

l	Accuracy			l	Confusion Ma		atrix		visua	Inspect	ION	
	Training Dataset(s)	Augmentation	Testing	K-N	learest Neighbor	s (KNN)	Rand	lom For	est (RF)	Deep Neural	Network ((DNN)
odel	torrey	NA	20% of dataset	accu [5179 [5310	racy: 0.90299687 Islon matrix: 19 6158] 0 54956]	87799328	accuracy: 0.996313519912065 confusion matrix: [57806 145] [291 60028]		35199120656	accuracy: 0.9772 confusion matrix: [57270 832] [1869 58245]		
			torreyRFID	accu confi [1865 [2141	racy: 0.89532109 usion matrix: 59 22294] 3 187268]	95990746	accuracy:0 confusion [196640 1 [66213 14	0.81202 matrix: 2287] 42460]	10727969349	accuracy: 0.67 confusion mat [186145 22894 [111916 96602	71507397 rix:] !]	845549
	torrey	flipY, rot 90, rot -90	20% of dataset	confi	confusion matrix:		accuracy: 0.9791261520250275 confusion matrix:			accuracy: 0.9291 confusion matrix:		
				[197328 34779] [34281 206503]		[True la	and	Land c	lassified a	as wav	es]	
			torreyRFID	accu confi [1651	rracy: 0.799453457682488 usion matrix: 129 43724]		[Waves	s clas	sified as	land Tru	ie wav	es]
				[400	11 168670]	45028746	[76134 13	32539] 0.83060	01431418722	[133525 74993 accuracy: 0.87	8] '47	
	torrey, LJshores, blacks, delmar	flipY, rot 90, rot -90	20% of dataset	confi [5283 [954	usion matrix: 82 122553] 69 620460]	40020740	confusion [522853 1 [93451 6	matrix: 21343] 23190]		confusion mat [597203 5223 [80463 64595	rix: 3] 0]	
			torreyRFID	accu confi [1610 [333	racy: 0.38580810 usion matrix: 188 46890] 86 174497]	18551783	accuracy: confusion [171404 3 [98258 11	0.67485 matrix: 7523] 10415]	39272030651	accuracy: 0.58 confusion mat [146982 62054 [113039 95479	06698055 rix:]]	820325
	torrey, feature engineering	NA	20% of dataset	accu confi [5349 [616	racy: 0.91012747(usion matrix: /9 4465] 0 54099]	09658865	accuracy: confusion [58018 10 [231 599	0.99714 matrix: 07] 914]	21324088949	accuracy: 0.99 confusion mat [57991 214] [485 59526]	141 rix:	
			torreyRFID	accu confi [1943 [347	accuracy: 0.8820670891472311 confusion matrix: [194364 14489] [34752 173929]		accuracy: 0.8871671455938698 confusion matrix: [200765 8162] [38957 169716]		accuracy: 0.6622305138976037 confusion matrix: [190699 18337] [122700 85818]			
	torrey, feature engineering	flipY, rot 90, rot -90	20% of dataset	accu confi [2100 [284	racy: 0.893207944 usion matrix: 182 22097] 04 212308]	8554741	accuracy: confusion [230281 [4103 23	0.98853 matrix: 1320] 37376]	68225247315	accuracy: 0.96 confusion mat [224098 7619 [10641 230506	i14 irix:]]	
			torreyRFID	accu confi [1838 [390	racy: 0.84645561 usion matrix: 138 25015] 95 169586]	79856012	accuracy: confusion [190195 1 [34740 17	0.87195 matrix: 8732] 73933]	40229885058	accuracy: 0.69 confusion mat [152311 56725 [69646 138872	73541146 rix: 5] 2]	773831

Data AugmentationAccuracyIncreases Model Robustness

Simple RF: 1 Training Beach, No augmentation

Failure to classify on 'East Coast': ~25% accuracy

Visual Inspection

Confusion Matrix

Data augmentation reduces dependency on X (East-West) Increase accuracy on 'East Coast': ~80% accuracy which helps resolve 'flipped' classification issue

Future Work

- Explore hyperparameter space
- Further expand training data with full datasets & additional surveys
 - Confusion matrices will be best measure of model accuracy because of class imbalance
 - Investigate how wave conditions impact model performance
- Compare methods for normalization (e.g. min/max scaling vs. mean/std)
- Explore more robust error metrics for classification (i.e. Precision, Recall, AUC curve etc.)

Future Work (beyond class report)

- Explore hyperparameter space
- Further expand training data with full datasets & additional surveys
 - Confusion matrices will be best measure of model accuracy because of class imbalance
 - Investigate how wave conditions impact model performance
- Compare methods for normalization (e.g. min/max scaling vs. mean/std)
- Explore more robust error metrics for classification (i.e. Precision, Recall, AUC curve etc.)
- Modify deep learning model
 - Implement early stopping
 - Smooth out accuracy and loss curves

CCCIA field crew will decide on best model

References

- Buscombe, D. & Carini, R. J. A Data-Driven Approach to Classifying Wave Breaking in Infrared Imagery. *Remote Sensing* **11**, 859 (2019).
- Eadi Stringari, C., Harris, D. L. & Power, H. A novel machine learning algorithm for tracking remotely sensed waves in the surf zone. *Coastal Engineering* **147**, (2019).
- Eadi Stringari, C., Veras Guimarães, P., Filipot, J.-F., Leckler, F. & Duarte, R. Deep neural networks for active wave breaking classification. *Scientific Reports* **11**, 3604 (2021).
- Kim, J., Kim, J., Kim, T., Huh, D. & Caires, S. Wave-Tracking in the Surf Zone Using Coastal Video Imagery with Deep Neural Networks. *Atmosphere* **11**, 304 (2020).
- Krishna Moorthy, S. M., Calders, K., Vicari, M. B. & Verbeeck, H. Improved Supervised Learning-Based Approach for Leaf and Wood Classification From LiDAR Point Clouds of Forests. *IEEE Transactions on Geoscience and Remote Sensing* **58**, 3057–3070 (2020).
- Matsumoto, H. & Young, A. P. Automated Cobble Mapping of a Mixed Sand-Cobble Beach Using a Mobile LiDAR System. *Remote Sensing* **10**, 1253 (2018).
- Medina, F. Patricia, and Randy Paffenroth. "Machine Learning in LiDAR 3D Point Clouds." *ArXiv:2101.09318 [Cs]*, Jan. 2021. *arXiv.org*, <u>http://arxiv.org/abs/2101.09318</u>.
- Qi, Charles R., et al. "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation." *ArXiv:1612.00593 [Cs]*, Apr. 2017. *arXiv.org*, <u>http://arxiv.org/abs/1612.00593</u>.
- Sturdivant EJ, Lentz EE, Thieler ER, Farris AS, Weber KM, Remsen DP, et al. UAS-SfM for Coastal Research: Geomorphic Feature Extraction and Land Cover Classification from High-Resolution Elevation and Optical Imagery. Remote Sensing. 2017 Oct;9(10):1020.
- Xiang Li, Lingjing Wang, Mingyang Wang, Congcong Wen, Yi Fang, "DANCE-NET: Density-Aware Convolution Networks with Context Encoding for Airborne LiDAR Point Cloud Classification." *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 166, Aug. 2020, pp. 128–39. *www.sciencedirect.com*, doi:10.1016/j.isprsjprs.2020.05.023.

(https://www.sciencedirect.com/science/article/pii/S0924271620301490)