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Background [Marius]

● An airfoil is the 2D cross-section of a wing or rotor blade

● Airfoil analysis provides insight into the following aerodynamic parameters:
○ Lift coefficient C

l

○ Drag coefficient C
d

○ Moment coefficient C
m

○ Pressure coefficient C
p

● Under subsonic conditions (M < 1) C
l
 and C

d
 mostly depend on:

○ Angle of attack 𝛂 (AoA )

○ Reynolds number Re 

𝛂



Motivation [Marius] 

There are two main methods to predict C
l
 and C

d
:

1. CFD (computational fluid dynamics) solver
○ Pro: exact flow solution by solving Navier-Stokes equations
○ Con: Computationally expensive, long simulation time 

2. (Vortex) panel method (Xfoil is state-of-art)
○ Pro: fast prediction by dividing airfoil into panels
○ Con: Inaccurate compared to solving NSE, not always robust

Goal: Develop ML model to predict C
l
 and C

d
 by using method (2) to generate database to ensure:

● Instantaneous and robust prediction of C
l
 and C

d
● Suitability for gradient based optimization



Literature survey [Marius]

Predicting airfoil performance using ML has gained popularity over the last two years

● Li et al. [2019]
○ Airfoil parameterization via singular value decomposition (SVD) to generate airfoil mode shapes for transonic 

and subsonic flow regimes  → 2 separate models

○ Surrogate modelling techniques such as gradient enhanced kriging and partial least squares → Not actual ML

● Bouhlel et al. [2020]
○ Similar airfoil parameterization approach via SVD but combined for transonic and subsonic regime

○ Used gradient enhanced artificial neural network (ANN) 

○ CFD solver uses adjoint method to calculate derivatives of Cl/Cd w.r.t to AoA and Mach number



Literature survey for neural network algorithm [Xiangbei] 

1. Czarnecki et al.:  Sobolev Training for Neural Networks

a. It  incorporates the gradient information in the loss function with the 

training samples while training artificial neural network.

b. Improve the quality of our predictors, as well as the data-efficiency 

and generalization capabilities of function approximation.

2. Bouhlel et al.:  Scalable gradient–enhanced artificial neural networks 
for airfoil shape design in the subsonic and transonic regimes

a. Training  gradient-enhanced artificial neural network (SANN and 

mSANN) to model the aerodynamic force coefficients of airfoils in 

both subsonic and transonic regimes. 

b. mSANN is used to to introduce the gradient information gradually 

during the learning process  by incorporating a parameter to set the 

weight of gradient information.  



Details on the dataset [Marius]

Obtain B-spline control 
points for upper and 
lower airfoil surface

Run Xfoil for:
● -14°<AoA<14°
● Re = 6 Re

to obtain C
l
 and C

d

Smooth data:
● C

l
: Linear fit

● C
d
: Least squares 

with regularization

Extrapolate C
l 
and C

d
 to 

±90°  via Viterna model 
(airfoil is modeled as flat 
plate in stall regime)

Output data

Pair control points with all 
combinations of AoA and 
Re

Input data



Details on the dataset [Marius]

Our own dataset

1. Pick 100 airfoils from the UIUC airfoil database (contains almost 1700 airfoils)

2. Run Xfoil for 100 airfoils at 6 different Reynolds numbers and 400 different AoA               
○ n = 100 x 6 x 400  = 240 000 samples for C

l
 and C

d
 

○ Output shape is n x 1  = 240,000 x 1 for C
l 
and C

d

3. Represent all airfoil shapes in the same way via B-spline parameterization 
○ B-splines are piecewise polynomials defined by control points (cp), each having a pair of x and y coordinates

○ We chose 8 cp for the airfoil lower surface and 7 for the upper surface

○ d = 32 = number of input variables: 2 x 15 cp (30 x-y coordinates) + 1 AoA + 1 Reynolds number

○ Input shape is n x d = 240,000 x 32



Details on the dataset [Marius]

NACA 2414 airfoil



Details on feature extraction used [Xiangbei]

1. Our own data: 
a. B-spline representation to define the airfoil geometry.
b. A larger range of attack angles with corresponding Reynolds numbers.  

2. Bouhlel's mSANN model benchmark data: 
a. Using inverse distance weighting (IDW) to interpolate the surface function of each airfoil.
b. Then applying singular value decomposition (SVD) to  reduce the number of variables that define the airfoil 

geometry. It includes a total of 14 airfoil modes (seven for camber and seven for thickness) .
c. Totally 16 input variables, two flow conditions of Mach number (0.3 ~ 0.6) and the angle of attack 

(2 ◦ ～ 6◦) plus 14 shape coefficient.
d. The output airfoil aerodynamic force 

coefficients and their respective 
gradients are computed using ADflow,
which solves the RANS equations with 
a Spalart–Allmaras turbulence model.



Details on the model used [Mingyuan]

Table of layers: Layers Activation 
function

Number of 
neurons

Input layer N/A 16

Hidden layer 1 ReLu 120

Hidden layer 2 ReLu 120

Hidden layer 3 ReLu 120

Hidden layer 4 ReLu 120

Hidden layer 5 ReLu 120

Hidden layer 6 ReLu 60

Output layer N/A 1

The structure of the dataset 
depends on the dimension of the 
input data and the number of data 
points in the set.



Three models for comparison: 
1. ANN 2. Sobolev ANN (SANN) 3. Modified SANN (mSANN) [Mingyuan]

 
Why SANN?

To exploit the derivative of the 
physical model when training a 
neural network. This can 
increase the accuracy of 
prediction.

Why mSANN?

Accelerate  the training 
convergence by controlling 
how much information is used 
in the SANN model.

ANN:

SANN:

mSANN:



Results/Observations for Bouhlel’s dataset [Xiangbei]

2.     Evaluation methods:  MSE, R2 score, loss

MSE R2 score

ANN 2.417e-6 0.828

SANN 2.250e-6 0.839

mSANN 2.165e-6 0.846

1. Prediction plot for each model



Results/Observations for our own dataset [Xiangbei]

2.     Evaluation methods:  MSE, R2 score, loss

MSE R2 score

ANN 0.0037 0.982

1. Prediction plot for each model



Further items to be completed [Xiangbei]

1. Cross Validation

2. Generate more dataset with more types of subsonic airfoils

3. Compute derivatives for our own dataset to train in SANN and mSANN
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Run down of the code


