
Inverse Pendulum 
Simulation using 

Reinforcement Learning
Yuanjun “Dastin” Huang and Po Hsiang Huang



Introduction
01



Inverted Pendulum problem involves balancing a pendulum on a cart.

Widely adopted baseline problem for many control algorithms

Reinforcement learning is a subfield of machine learning

General problem of decision making

Background



OpenAI developed Gym because:

“The need for better benchmark”

“The lack of standardization of environments used in publications”

Classic pendulum control problems to tackle:

Cartpole-v1, Pendulum-v0, Acrobot-v1

Background



Traditional methods are not effective in more complicated problems

E.g. Acrobat-v1 with two inverted pendulums connected

Traditional methods are limited to be discrete inputs

Reinforcement learning using neural networks may be more effective at learning a function 
approximator for the Bellman equation

Deep Learning Motivation



Related Work
02



OpenAI Gym

OpenAI Gym Leaderboard

Balancing a CartPole System with Reinforcement Learning - A Tutorial

Literature Survey

https://arxiv.org/pdf/1606.01540.pdf
https://github.com/openai/gym/wiki/Leaderboard
https://arxiv.org/pdf/2006.04938.pdf


Deep Reinforcement Learning with Double Q-learning

Comparison of reinforcement learning algorithms applied to the cart-pole problem

Fixed point controllers and stabilization of the cart-pole system and the rotating pendulum

Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problems

Literature Survey

https://arxiv.org/pdf/1509.06461.pdf
https://ieeexplore.ieee.org/document/8125811
https://ieeexplore.ieee.org/document/830086
http://www.derongliu.org/adp/adp-cdrom/Barto1983.pdf


Methods
03



No external dataset was needed

Collect observations from the environment (continuous):

Cart Position, Cart Velocity, Pole Angle, and Pole Angular Velocity

Perform actions to the environment (discrete):

Push cart to the left and Push cart to the right

Dataset



For Q Learning and Double Q Learning:

Needed to discretize continuous observations into tables

Assign bins for each observation in the order of its importance to the problem

Tested out different bin counts, (1, 1, 6, 12) works the best

For Deep Q Network:

Tried 2D Convolutional Neural Network on frames extracted from the environment

No need for discretizing observations on kinematic state

Feature Extraction



Explore vs Exploit

Goal: maximize Q value, or future expected reward

Stored into a Q table matching observations to actions

Q Learning



Double Q = Two Q Tables

Action is chosen based on the average value of the two tables

Each table is updated alternately at each iteration

Counters bias introduced in a single Q Table due to overestimation of future return value

Double Q Learning



Deep neural network = function approximator

Q learning = learning the Q value of each state-action pair, i.e., Q(s, a) = f(s, a)

Deep Q learning = using DNN to approximate the function f

2 different pipelines

Rendered image -> Q values -> control strategy

System kinematics state -> Q values -> control strategy

Deep Q Learning



Pipeline 1: rendered image as input

DL Model Architecture

Pipeline 2: take (x, ẋ, 𝜃, 𝜔) as input



Experiments and Results
04



Results



Cartpole-v0
Maximum timestep = 200
Reach an average 195 steps over 100 episodes

Cartpole-v1
Maximum timestep = 500
Reach an average 475 steps over 100 episodes

*results are averaged over 10 runs

Results Summary

Q Learning Double Q Learning DQN (CNN) DQN (FNN)

Episodes 300.6 279.6 200 [fixed] 200 [fixed]

Steps w/ perturb 183.9 180.2 9.3 200

Q Learning Double Q Learning DQN (CNN) DQN (FNN)

Episodes 323.0 314.2 200 [fixed] 200 [fixed]

Steps w/ perturb 451.0 454.3 9.4 500



Cartpole-v0
Maximum timestep = 200
Reach an average 195 steps over 100 episodes

Cartpole-v1
Maximum timestep = 500
Reach an average 475 steps over 100 episodes

*results are averaged over 10 runs

Old Results Summary

Q Learning Double Q Learning DQN (CNN) DQN (FNN)

Episodes 301.6 432.6

Steps w/ perturb 181.3 182.1

Q Learning Double Q Learning DQN (CNN) DQN (FNN)

Episodes 339.5 296.6

Steps w/ perturb 451.7 433.0



Code Demo
05



Future Work
06



● Documentation
○ Code
○ README

● Test out different parameters
● Try out different network architectures
● Implement other variations of Q learning: Double DQN, Dueling DQN, Prioritized Experience 

Replay…… 
● Final report write up

TODO



References
07



[1] Nagendra, Savinay, et al. "Comparison of reinforcement learning algorithms applied to the 
cart-pole problem." 2017 International Conference on Advances in Computing, 
Communications and Informatics (ICACCI). IEEE, 2017.

[2] Olfati-Saber, Reza. "Fixed point controllers and stabilization of the cart-pole system and 
the rotating pendulum." Proceedings of the 38th IEEE Conference on Decision and Control 
(Cat. No. 99CH36304). Vol. 2. IEEE, 1999.

[3] Brockman, Greg, et al. "Openai gym." arXiv preprint arXiv:1606.01540 (2016).
[4] https://gsurma.medium.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b5

8288
[5] https://blog.floydhub.com/an-introduction-to-q-learning-reinforcement-learning/
[6] https://gym.openai.com/docs/
[7] https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
[8] https://github.com/tensorflow/agents/blob/master/docs/tutorials/1_dqn_tutorial.ipynb
[9] https://engineering.purdue.edu/DeepLearn/pdf-kak/week16.pdf

References

https://gsurma.medium.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288
https://gsurma.medium.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288
https://blog.floydhub.com/an-introduction-to-q-learning-reinforcement-learning/
https://gym.openai.com/docs/
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://github.com/tensorflow/agents/blob/master/docs/tutorials/1_dqn_tutorial.ipynb
https://engineering.purdue.edu/DeepLearn/pdf-kak/week16.pdf


The End
Thank you!


