Chest X-ray Classification for Covid-19 detection

Group 19 Chih-Chieh Chien, Cheng-Yu Chen, and Yun-Yi Lin

Background

- Covid-19 pandemic has caused millions of deaths worldwide
- Covid-19 is contagious
- No efficient way to detect Covid-19
- A chest x-ray cannot accurately distinguish between Covid-19 and other respiratory infections

Cases	Deaths
171,944,492	3,576,062

Literature survey

• Transfer learning and fine-tuning with VGG16 Accuracy: 95%, Classes: Covid-19, Pneumonia, Normal

- Image augmentation and transfer learning with Densenet201 Accuracy: 97%, Classes: Covid-19, Viral Pneumonia, Normal
- Normalization and transfer learning with Resnet50 Accuracy: 96%, Classes: Covid-19, Other pneumonia, Normal

Dataset

- Public data from Kaggle
- 4000 chest X-ray images
- Image dimension is 299*299*3
- 4 Classes: Covid-19, Lung Opacity, Normal, Viral Pneumonia

	Training	Validation	Testing
Normal	800	100	100
Covid-19	800	100	100
Lung Opacity	800	100	100
Viral Pneumonia	800	100	100

Dataset

Covid-19

Lung Opacity

Normal

Viral Pneumonia

Details on the model used

• ML

- K Nearest Neighbor
- Random forest

• DL

- VGG19
- ResNet50
- o DenseNet121
- InceptionV3
- Xception

K Nearest Neighbor (k-NN)

Random forest (RF)

VGG19

DenseNet

DenseNet

Layers	Output Size	DenseNet-121	DenseNet-169 DenseNet-201 DenseNet-264	
Convolution	112 × 112		7×7 conv, stride 2	
Pooling	56 × 56		3×3 max pool, stride 2	
Dense Block (1)	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	
Transition Layer	56 × 56	1×1 conv		
(1)	28×28		2×2 average pool, stride 2	
Dense Block (2)	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	
Transition Layer	28×28		1×1 conv	
(2)	14×14		2×2 average pool, stride 2	
Dense Block (3)	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 64$	
Transition Layer	14 × 14	1×1 conv		
(3)	7 × 7	2×2 average pool, stride 2		
Dense Block (4)	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	
Classification	1 × 1		7×7 global average pool	
Layer			1000D fully-connected, softmax	

InceptionV3

Xeception

• Inception Network + Depthwise separable convolution

Result with Different Models

With 400 testing image

Model \ Accuracy	(w/o) fine-tuning	With fine-tuning
VGG19	84.25%	92.25%
ResNet50	69.50%	91.75%
DenseNet121	48.75%	91.25%
InceptionV3	51.00%	89.50%
Xception	63.00%	89.00%

Model	Accurcy
k-NN	73.25%
RF	82%

Further work to be completed

- Try some image augmentation method
- Use different models

Reference

[1] A. Makris, I. Kontopoulos, and K. Tserpes COVID-19 detection from chest X-Ray images using Deep Learning and Convolutional Neural Networks

[2] M.E.H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z.B. Mahbub, K.R. Islam, M.S. Khan, A. Iqbal, N. Al-Emadi, M.B.I. Reaz, M. T. Islam, "Can Al help in screening Viral and COVID-19 pneumonia?" IEEE Access, Vol. 8, 2020, pp. 132665 - 132676.

[3] Ko H, Chung H, Kang WS, Kim KW, Shin Y, Kang SJ, Lee JH, Kim YJ, Kim NY, Jung H, Lee J COVID-19 Pneumonia Diagnosis Using a Simple 2D Deep Learning Framework With a Single Chest CT Image: Model Development and Validation J Med Internet Res 2020;22(6):e19569

[4] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016

[6] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger; Densely Connected Convolutional Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4700-4708

[7] C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.

[8] F. Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint arXiv:1610.02357v2, 2016