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Scene Understanding

Semantic segmentation - per pixel
image/video understanding

Helps to identify what is in the road and
surroundings to be used in optimal
control

https://www.tesla.com/autopilotAl
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https://docs.google.com/file/d/1Lxy1TJSu6US-QRb3UHVW252nx6kvoKsa/preview
https://www.tesla.com/autopilotAI

Why ML/DL can help

No prescribed method in determining a class i
for given pixels in an image - FON

¥

CRF-RNN -

Success with Deep Learning - data not

always abundant = -

https://www.robots.ox.ac.

uk/~szheng/papers/CRFa
sRNN.pdf

Conventional methods were poor performers
(now used as refinement layers)


https://www.robots.ox.ac.uk/~szheng/papers/CRFasRNN.pdf
https://www.robots.ox.ac.uk/~szheng/papers/CRFasRNN.pdf
https://www.robots.ox.ac.uk/~szheng/papers/CRFasRNN.pdf

Literature Review

Semantic Segmentation: FCN, U-Net, DeeplLab, GCN ... plus
many others

CNNs! (mainly)
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Feature Extraction

Convolutional layers extract features automatically from the data by
what causes large output values - filters out poor indicators
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https://towardsdatascience.com/applied-deep-learning-part-4-c
onvolutional-neural-networks-584bc134c1e2


https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Dataset details

CityScapes data subset - tackling
small data problem

~2600 images for training
~300 images for validation
~500 for test

| abels were attached to data
(right) and not categorical

https://www.kaggle.com/dansbecker/cityscapes-image-pairs
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https://www.kaggle.com/dansbecker/cityscapes-image-pairs

Our approach

Methods for dealing with small data - fewer parameter networks, skip
connections, transfer learning, data augmentation, etc.

Evaluation: Intersection Over Union, Pixel Accuracy, Manhattan Score

'’




Models - U-net/U-net++

Encoder and Decoder structure

Convolutional layers
Pooling
Upsampling

Skip connections to counter
vanishing gradient/poor learning



https://arxiv.org/pdf/1912.05074.pdf

Models - SegNet

Store max-pooling indices: location of the maximum feature value of each

pooling window

Replace U-net skip connections with passing these indices

Convolutional Encoder-Decoder

Pooling Indices

e —
-g’.

RGB Image I Conv + Batch Normalisation + RelLU

I Pooling [l Upsampling

Softmax

https://arxiv.org/pdf/1511.00561.pdf

Output

Segmentation



https://arxiv.org/pdf/1511.00561.pdf

Results - same filters/kernels

Metric

Label

U-net

U-net++

SegNet

Image

Training Method

From scratch

From scratch

From scratch

Metric SOTA
mloU 86%
Parameters ~6M

Parameters - ~543k ~641k ~278k
Pixel Accuracy - 45% 62% 22%
Manhattan Score i 0.21 017 052

per pixel




Observations

Not ideal to use MSE for segmentation
Models trained from scratch did OK

Computational power/availability was limited for extending
and perfecting results




Further improvements ideas

Transfer learning with pre-trained FCN
Labeling for different loss functions/metrics

Further data augmentation
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