TEAM 59: LEAP MOTION HAND GESTURE CLASSIFICATION

Xuezhu Hong, Yuchen Lu, and Shengzhe Zhang

University of California San Diego, La Jolla, CA 92093-0238

ABSTRACT

Hand gesture recognition forms a foundation for low-level
Human-Computer Interaction (HCI). In this paper, Hand
Gesture Recognition Database from Kaggle with ten different
gestures is used to train a model. We implemented a Con-
volutional Neural Network (CNN) with data augumentation
and used a 3-phase training technique to increase training
throughput and reduce overfitting. The final testing accuracy
obatined is 99.9%. We also leveraged transfer learning to
train a model for American Sign Language (ASL) dataset
with 3-phase training technique and achieves a testing accu-
racy of 99.6%.

Index Terms— Convolutional Neural Network (CNN),
Transfer Learning, Image Augmentation, Image Segmenta-
tion

1. INTRODUCTION

Hand gestures are a fundamental way for human beings to
express ideas. Being able to recognize hand gestures al-
lows human to send information and instructions directly to
computers. It is a powerful and robust method of Human-
Computer Interaction (HCI). Hand gesture recognition has
been a widely discussed topic in the computer vision com-
munity. Recent years, most researchers use deep learning to
classify hand gestures [1]. In this paper, we leverage convo-
lutional neural network and transfer learning to classify ten
different hand gestures using near infra-read images obtained
from the leap motion sensor.

2. RELATED WORK

In [2], an unsupervised approach with pair-patch comparison
features is used for training hand gesture dataset. Machine
learning model is based on random forest and distribution of
samples can be quickly described by pair-patch comparison
features. To increase detection accuracy and efficiency, skin
detection is used before implementing the random forest clas-
sifier. We draw the idea of preprocessing and image segmen-
tation used in this paper from [2].

It is also been shown in [3] that Deep Convolutional Net-
work demonstrate outstanding performance in image classi-
fication and recognition. An Adapted Deep Convolutional

Neural Network (ADCNN) is trained with data augmenta-
tion. The presence of network initialization and regularization
helps reduce overfitting. Inspired by [3], data augmentation
is also implemented in this paper.

3. DATASET AND FEATURE PROCESSING

The dataset we use is the leap motion hand gesture recogni-
tion database [4]. The dataset is composed of 10 different
hand gestures performed by 5 men and 5 women. The ten
classes are showing in Fig. 1. There are 20000 photos with
size 640x240 in the dataset. All the gestures were captured
in leap motion by infrared cameras, therefore besides static
gesture classification, it also provides the possibility of ac-
complishing real-time gesture detection and classification.

For preprocessing the photos, firstly we convert them to
grayscale, and resize them to 224x224, which is a suitable
input size for many pretrained models such as vgg. Secondly
we do the image augmentations with random variances. Then
all the photos are subject to segmentations to extract more
meaningful features. We also normalize the images to get a
more stable training result. Then we split train and test sets
by ratio of 0.8 / 0.2. At training time, we use data generator
in Keras to further add shift variances to the training images.
The purpose of this step is to introduce more new samples.
This will enlarge the training space and further improve the
generality of the model.

3.1. Image Augmentation

Many captured hands are not located at the center of the pho-
tos originally, and we do not crop the photos by taking the
hands as the center since some position variances in the pho-
tos are desired. Therefore, we mannully injected some vari-
ances to the images. Each image is randomly subject to one of
these four variances: rotation, shift, horizontal flip, and zoom

K K
F =

Fig. 1. Top row: C, palm side, index, OK, down. Bottom row:
fist, L, palm, fist side, thumb

class 5 origin class 5 transformed

-

Fig. 2. Left: original photo; right: rotated photo

Fig. 3. Left: original photo; right: segmented photo

in or zoom out. Fig. 2 is an exmaple of rotation. By per-
forming data augmentation, we double the size of the dataset,
which improves the robustness of the model. The added vari-
ances also help reduce overfitting and enhance the generaliza-
tion ability.

3.2. Image Segmentation

We perform the image segmentation using Otsu’s threhold-
ing [5]. During the segmentation process, each pixel will be
assigned to certain groups or clusterings based on a thresh-
olding rule. It can help separate the object we want to focus
on from the background. Otsu’s thresholding assumes the im-
age histogram is bimodal, and it will automatically determine
an optimal threshold above which the pixel value will be as-
signed 255, or the pixel value will be assigned 0 if it is below
the threshold. Since the infrared photos were taken with in-
frared cameras so they are almost black and white with the
highest intensity at the hand regions, therefore Otsu’s method
is reasonable to be used to do segmentation. Fig. 3 shows an
example of segmented image.

Fig. 4. convolutonal layer

4. METHODS

4.1. Convolutional Neural Network

Convolutional Neural Network(CNN) is a certain type of neu-
ral network which is frequently used to deal with computer vi-
sion tasks such as image classification. It is composed of sev-
eral convolutional layers which is able to extract features from
images. Convolution operation on images will have a convo-
lutional kernel sliding horizontally and vertically through the
whole image with predefined size and step length. The pro-
cess is referred to as sliding dot product or cross-correlation
[6]. The resulting image will be a matrix containing signifi-
cance for each pixel. Fig. 4 shows the schematic of a simple
convolutional layer.

In most cases, convolutional layer is not the only type of
trainable layer in CNN. Several Dense layers, which are fully-
connected, are located near the output layer. These fully-
connected layers map different features obtained from convo-
lutional layers to the hidden nodes, which could be regarded
as perceptrons or “weak learners”, and eventually connect
them to different labels.

The existence of non-linearity is one of the main reasons
why neural network works so well in regression and clas-
sification tasks. The output of each linear layer is passed
through a non-linear activation function (usually ReLU ,Tanh
or Sigmoid) to provide the required non-linearity. Addition-
ally, some other non-linear layers, e.g. Dropout and Max-
Pooling, are frequently implemented to reduce over-fitting.

4.2. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is currently the standard
method in training neural networks [7]. It aims at minimizing
the loss for a whole batch in each gradient step. It has several
hyper-parameters: the learning rate determines the step size
towards the computed direction; weight decay regulates the
1-2 norm of the whole trainable parameter matrix so that they
would not explode; momentum determines how much the pre-
vious direction should take into consideration in current step,
while the optional annihilation parameter makes the gradient
step even smaller when the neural network has almost con-
verged.

In our experiments, we will only implement Adam opti-
mizer [8] for all models and training processes. Adam has a
more complicated regime of implementing previous momen-
tum, which is regulated by (31, and 2, which are the first
and second order momentum decay rate respectively. We will
use all default hyper-parameters given by Keras, which are
Ir=1e—3,81 =0.9,8, =0.999,¢ = le — 7.

4.3. Transfer Learning

Transfer Learning is a popular network training technique. It
allows us to train the network starting from the saved weights

from a model pre-trained for a different but related task [9]. It
is theoretically determined how much these would help with
a faster convergence, while we could understand such process
as leveraging the existing structure in the network. We could
describe some natural semantics to make it quicker adapt to
the new task.

To maintain the previously learned “structures”, we may
want to freeze some of the trainable layers. That means we
make them not trainable to preserve the information from pre-
vious tasks [10]. This is also known as "fine tuning” as it will
only change part of parameters in the network. Also, freezing
the layers near the input end is helpful in preventing the van-
ishing of gradient due to the deepness in an extremely deep
network without recurrent structure, such as Xception.

While transfer learning may be beneficial to training, it is
not suitable for all cases. If the natural semantics of the pre-
trained dataset and current dataset are so different, transfer
learning may not work very well. Also, if too many trainable
layers are frozen, the remaining trainable parameters may be
insufficient for new classification tasks.

5. EXPERIMENTS

In this section, we (1) use the dataset described in Section
1 for finding the capable CNN model and training strategy,
and (2) combine with American Sign Language (ASL) dataset
to implement and test transfer learning. The latter contains
87,000 colored hand gesture images for 29 classes. For trans-
fer learning, we reshape the input size to be 100 x 100.

5.1. Baseline Model

For the first experiment, we started with the baseline of a sim-
ple LeNet [11], which is a 5-layer simple network invited by
Yann LeCun in 1998. The first 2 weighted layers are convo-
lutional layers, while the rest 3 are fully-connected dense lay-
ers. The activation function the model implemented is ReL.U.
Max-Pooling middle layers are set after each convolutional
layer.

Figure 5 represents the structure of LeNet-5 for our given
input size. Even though neither the structure is deep nor any
filter is wide, the total volume of parameters is still high due
to the dense layer taking the flattened vector as input. The
high volume of parameters makes the network slower to train
with a higher tendency to become over-fitting.

5.2. Optimization of Model

Based on LeNet, we developed our new network. This is a
similar structure, but with one more convolutional layer and
one less dense layer. Such alteration makes the input width
after flatten layer much narrower, thus the total amount of
parameters is reduced from 6 million to 700k. Figure 6 illus-
trates the structure of our new network.

Layer (type) Output Shape Param #
convad (Conv2D) (Mone, 222, 222, 6) 60
max_pooling2d (MaxPooling2D) (None, 111, 111, 6) 2]
conv2d_1 (Conv2D) (Mone, 109, 109, 16) 880
max_pooling2d_1 (MaxPooling2 (None, 54, 54, 16) <]
flatten (Flatten) (Mone, 46656) <]

dense (Dense) (Mone, 128) 5972096
dense_1 (Dense) (Mone, 84) 10836
dense_2 (Dense) (Mone, 1@) 850

Total params: 5,984,722
Trainable params: 5,984,722
Non-trainable params: @

Fig. 5. The structure of LeNet for 224*224 input

Layer (type) output Shape Param #
conv2d (Conv2D) (Mone, 222, 222, 6) 60
max_pooling2d (MaxPooling2D) (Mone, 111, 111, 6) 2]
conv2d_1 (Conv2D) (Mone, 109, 109, 16) 880
max_pooling2d_1 (MaxPooling2 (Mone, 54, 54, 16) 2]
conv2d_2 (Conv2D) (Mone, 52, 52, 16) 2320
max_pooling2d_2 (MaxPooling2 (Mone, 26, 26, 16) 2]
flatten (Flatten) (Mone, 10816) 2]

dense (Dense) (Mone, 64) 692288
dense_1 (Dense) (Mone, 10) 650

Total params: 696,198
Trainable params: 696,198
Non-trainable params: @

Fig. 6. The structure of our model for 224*224 input

By using our default Adam optimizer to train these two
networks in TensorFlow-based Keras platform, the two mod-
els give similar test accuracy. The curves for LeNet-5 is
shown in the left in Figure 7. These models are obvi-
ously overfitting to the training data, since the train accuracy
reaches almost 1 while the test accuracy stuck at around 0.98
and the test loss gradually increases with more epochs [12].

While our new model does not significantly reduce over-
fitting, it actually reduces the volume of parameters and main-
tains similar accuracy. Therefore, in the rest of experiments,
we will only implement our own model. It is well-mentioning
that we also considered and attempted to implement some
more complicated popular CNN models, such as VGG-16,
ResNet, or Xception. However, we assumed these models
could not work well on our task due to the extent of complica-
tion of the natural semantics of hand gesture language versus
the super sophistic structures of these networks. Our few at-
tempts justify these assumptions because these models cannot
even converge for our dataset with basic training setting.

5.3. Optimization of Training Process

We implement data augmentation technique we described in
3.1 and try to fix overfitting [13]. The image generator can

create new image data by making random manipulations to
the original data, meaning that each input we taking to train
the network is now equivalent to a sample form a much larger
sample space than the original train set. Such randomness
we created makes the model much harder to fit all training
data. The training curves for our model trained with image
augmentation technique is shown in the right in Figure 7. No-
tice that the training accuracy/loss and testing accuracy/loss
are almost identical after 20 training epochs, meaning that the
model is not only capable for the training set, but also capable
for all the possible real-world data instead. The average test
accuracy we reached by this process in about 99%, which is
1 percent better than the baseline model.

However, we still want to get a even higher accuracy and
there is a main drawback of using image augmentation during
the whole training process: this requires the image generator
module to generate random data at the runtime of training and
thus seriously slower the training throughput.

To overcome these issues, we propose a 3-phase training
process: in stage 1, we only use original training data to train
the network to achieve the upper-bound test accuracy in nor-
mal case; in stage 2, we implement the random image gener-
ator to generate random data for training the network until we
reach the similar test accuracy in stage 1. Finally, in stage 3,
we use original data again. However, to reduce the parameter
we want to change, inspired by transfer learning, we freeze
the weights in all convolutional layers. We keep training the
network until it reaches the highest accuracy.

Using our model with the newly designed training pro-
cess, the accuracy versus epoch is shown in Figure 8. The
huge accuracy drop occurred when we began implementing
data augmentation. The final test accuracy is 0.999, which is
the best among our experiments.

5.4. Transfer Learning

For the second experiment, we attempt to use transfer learning
to train a model for ASL dataset based on the model of Leap-
Motion dataset with 99% test accuracy. Since ASL has much
more volume and classes of data, we are now compressing all
data in both datasets to size 100 x 100 and in grayscale. We
firstly train and save a model with the same structure in 5.2
but with compressed input size to reach 99% test accuracy,
and then drop the last layer of the network, shifting it to a
29-output dense layer instead.

From here, we have 3 different re-training settings: a base
strategy with no special changes; freezing all convolutional
layers; and the 3-phase training technique we described in 5.3.
The training curves and final accuracy are shown in Figure 9
and Table 1 respectively. From the curves, we find that not
freezing the top few layers gives a better converge rate, while
from the table we find that the final test accuracy of freezing
these layers is slightly higher. However, these results may
given by the statistical fluctuation since they are very subtle.

Fig. 7. Left: training curves for LeNet-5 without image aug-
mentation; right: training curves for our model with image
augmentation

accuracy vs epoch

§ 0.925

0875

0850
— train_accuracy

i
test_accurac y

0825

25 50 75 100 125 150 175 200
epochs

Fig. 8. Accuracy vs epoch of 3-phase training

base | freeze | 3 phase
train | 97.61 | 99.72 | 99.98
test | 97.62 | 98.61 | 99.60

Table 1. Accuracy of transfer learning for ASL dataset with
different training settings

6. CONCLUSION

We discuss the pre-processing of the dataset we implemented.
Based on LeNet-5, we proposed our model and training strat-
egy, which are particularly capable for such a gesture classi-
fication task. We managed to use transfer learning to train a
network for another relevant dataset.

y vs epoch

accuracy vs epoch

FR Y R —— P

Fig. 9. Left top: TL without layer freezing; right top: TL with
layer freezing; bottom: TL with 3-phase retraining.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

(13]

7. REFERENCES

J. Yashas; G. Shivakumar. Hand gesture recognition : A
survey. International Conference on Applied Machine
Learning (ICAML), 2019.

X. Zhao; Z. Song; Y. Zhao; F. Zheng. Real-time hand
gesture detection and recognition by random forest. In
Communications and Information Processing. Springer
International Publishing, 2012.

A. A. Alani; G. Cosma; A. Taherkhani; T. M. McGin-
nity;. Hand gesture recognition using an adapted convo-
lutional neural network with data augmentation. 2018
4th International Conference on Information Manage-
ment (ICIM), 2018.

Tomas Mantecon, Carlos R. del Blanco, Fernando Jau-
reguizar, and Narciso Garcia. Hand gesture recognition
using infrared imagery provided by leap motion con-
troller. In Jacques Blanc-Talon, Cosimo Distante, Wil-
fried Philips, Dan Popescu, and Paul Scheunders, edi-
tors, Advanced Concepts for Intelligent Vision Systems,
pages 47-57, Cham, 2016. Springer International Pub-
lishing.

N. Otsu. A threshold selection method from gray-level
histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9(1):62-66, 1979.

Wikipedia contributors. Convolutional neural network.

L. Bottou. Online algorithms and stochastic approxima-
tions. Online Learning and Neural Networks, 1998.

J. Ba D. P. Kingma. Adam: A method for stochastic
optimization. arXiv:1412.6980 [cs.LG], 2014.

J. West; D. Ventura; S. Warnick. Spring research presen-
tation: A theoretical foundation for inductive transfer.
2007.

V. Roman. Cnn transfer learning fine tuning.

Y. Lecun; L. Bottou; Y. Bengio; P. Haffner. Gradient-
based learning applied to document recognition. /EEE,
1998.

A. Skrondal B.S. Everitt. Cambridge Dictionary of
Statistics. Cambridge University Press, 2010.

J. Wang L. Perez. The effectiveness of data aug-
mentation in image classification using deep learning.
arXiv:1712.04621 [cs.CV], 2017.

Individual Contributions

Yuchen Lu: Yuchen finished the Abstract, Introduction and Related work section. He also relied
on questions from other reviewers. Coding-wise, he implemented a simple CNN as a baseline
for our model at the early stage.

Shengzhe Zhang: Shengzhe was in charge of image loading, extraction and integration. He did
the image preprocessing and feature extraction including augmentation and segmentation. He
also did the corresponding parts in presentation and paper.

Xuezhu Hong: Experimentations of different models and training strategies. Finish these
contents in presentation and report.

Replies to critical reviews

Critical review from team 64:

Potentially add a live video demonstration, where you can detect hand gestures on a
real time camera feed. The presentation, particularly in the background slide, made it
slightly implied that they had detected hand motions from a live camera feed.

Our response: It is a good idea to do real-time hand gesture detection. We decided that
the scope of our project only focuses on non-real-time because we want to obtain a
confident result with high accuracy.

It's unclear why they chose this particular model for their training? What are the pros and
cons of this method over other general deep learning methods?

Our response: We started off with LeNet as a baseline and modified it and implemented
our own CNN. We also used a data generator to avoid overfitting. Compared to other
general methods, our model ensures a high accuracy without overfitting the model. The
downside is that training time is quite long mainly due to the data generator along the
training process. Please refer to section 5 in our paper for more information.

Critical review from team 66:

1.

We think that group 59 should add more background information to introduce the
importance of the hand gesture detections.

Our response: Agreed. We emphasized its importance in HCI in our paper.

We think that it needs more clarification about why they chose this particular model, as
well as the pros and cons of such a model.

Our response: Same question as question 2 from team 64. Please see above.

Critical review from team 36:

1. The presentation was supposed to be of 12 minutes. The rest 10 minutes should be
code run through. It would have really helped if you reduced the talk to 12 minutes and
spent the rest of time talking about the code.

Our response: Agreed.

2. The only code we could see was the prediction part. Including data
preprocessing/model training in the presentation would have made things clearer.

Our response: Agreed.

3. Inthe presentation, you mentioned that the dataset was doubled. Was there class
imbalance in the dataset? If yes, how did you fix it?

Our response: The dataset itself is quite balanced in terms of image per category.
However, some of them are off-centered and we don’t want to simply crop the hand
without leaving some position variance in the photos. Therefore, we randomly lift, flip,
zoom in/out on each image and double our dataset.

4. While explaining LeNet5, you say that average pooling is used for non-linearities. Don’t
we use activation functions for that. Why is the activation function not used?

Our response: | think we made a mistake there. Average pool is not for non-linearities. It
helps extraction “sharpest” feature in our image. Activation function (ReLU) is used.

5. Inthe improvement for LeNet5, it would be better if you provided plots for accuracy and
convergence to prove your claim that the accuracy is the same but convergence rate is
higher.

Our response: Agreed. That would be more convincing. In the paper, we numerically
justified.
6. For the revised training model, why did you select these particular values of the epochs

for the different layers? Did you try different sets of epochs as well?

Our response: After some experiments, we found that the training accuracy/loss and
testing accuracy/loss are almost identical after 20 training epochs.

7.

You mentioned that you compared your results with deeper neural networks like
VGG16. What was the result that you got in comparison with these models? A plot
showing accuracy would help compare.

Our response: Agreed with adding a plot. We did some attempts with a basic training
setting and found VGG cannot converge for our dataset.

It would really help if all the final results were shown graphically, comparing accuracies
of all the implemented models with each other.

Our response: Agreed. It is a good idea for presentations to use more graphics than
numbers. In our paper, however, due to page limit, we only reported selected graphs to
emphasize our optimization process using data augmentation and 3-phase training
technique. Anyways, good point indeed.

