
TRAFFIC SIGN DETECTION USING DEEP LEARNING
BY GROUP 36

Sepehr Foroughi Shafiei, Hafiza Rimsha Rauf, Yashdeep Singh

University of California San Diego, La Jolla, CA 92093-0238

ABSTRACT
This project includes implementation and comparison of deep
learning based architectures for classification of forty three
different types of traffic signals. Popular CNN based archi-
tectures were evaluated on the basis of classification accuracy
and the prediction speed. Based on the results obtained, a
simple yet effective Convolutional Neural Network(CNN) ar-
chitecture was proposed that gives high accuracy at a great
prediction speed.

1. INTRODUCTION

Automotive industry is one of the largest industries in the
world. In 2019, ninety-two million motor vehicles were pro-
duced in the world, with the United States itself producing
over 2.5 million automobiles[1]. With the world moving
towards self-driving vehicles, more than 80 companies are
testing over 1400 of them in the United States alone [2]. It
was forecasted that there would be more than 10 million self-
driving cars on road by 2020 [3]. This prediction was quite
exciting but quite clearly, did not happen. There are numerous
reasons behind it, but the main issue is safety. Self-driving
cars need to identify all the details on the road with extreme
precision and accuracy including traffic signs not just for the
passenger, but the fellow pedestrians as well.

We began by studying the dataset at hand. Data prepro-
cessing was done to make the data ready to be used. First, data
was augmented to equalize class imbalance and standardiza-
tion was applied to it. Models were trained and tested on this
preprocessed data. Convolutional Neural Network (CNN) is
one of the powerful and the most popular network for clas-
sifying images. Most of the models we implemented use
CNN. The first model trained was vanilla VGG-19 and trans-
fer learning was applied to predict images. Then, Resnet50
and Densenet121 architectures were used with ImageNet[4]
weights initialization. Further, Inception-V1 i.e Googlenet
and RNN were implemented from scratch. Finally, observing
the trends, we proposed a new implementation using CNN. In
the end, we showed that our novel model has a higher accu-
racy for predicting traffic signs in comparison to other mod-
els we discussed in this project. Throughout this project, our
main focus was to increase complexity step by step and figure
out what works the best for this dataset.

2. RELATED WORK

Numerous studies and researches have been done in the field
of Machine Learning and Deep learning, especially involv-
ing self-driving cars. CNN is one of the famous architectures
in image classification and is widely used in image classifi-
cation. In this section, we share a few papers and projects
that have inspired us the most, and helped us understand the
problem.

We started off by finding a solution to the problem using
Support Vector Machines (SVM) [5]. In this research, auto-
matic sign detection was integrated on roads, and their model
was able to detect all types of signs like circular, triangular,
rectangular, and octagonal shapes. Owing to the high success
rate on the final predictions, they showed that SVM could be
a good model for this purpose.

In the next research that we studied[6], 100000 street im-
ages of Tencent city in China, and 30000 traffic sign images
were collected from them. The unique fact about their bench-
mark is that they were able to gather all the pictures of traffic
signs in the different weather forecasts. This can be a great
help in terms of real predictions. They used CNN architec-
ture to predict and detection of traffic signs. They tried not to
just focus on the images of signs, and they tried to have im-
ages that the car views while driving, and they ran their model
for those images. This paper gave us more insight into how
we should choose our dataset wisely and opened our ways to
think more about CNN.

Furthermore, we studied the project that offered a novel
CNN architecture [7]. They call their model OverFeat. They
figured that the multiscale and sliding window approach
would be very efficient for implementing CNN. Accord-
ing to this study, detecting object boundaries should be the
main target to design the CNN model. CNN can learn the
task in terms of classification simultaneously. After going
through this research, we shifted our attention to how deep
our model is and how its accuracy can be improved based on
the sign’s boundary. This paper won the localization task of
the ImageNet Large Scale Visual Recognition challenge and
motivated us to choose CNN for our implementation.

Finally, in order to get more sense of the CNN network,
we referred this research study[8]. According to this study,
most Convolutional Network architecture have the same de-



sign and structure, but the dimension of filters in each con-
volutional layer play a significant role in classifying images.
Therefore, different dimension filters were experimented in
their architecture. The dimensions that they explored were
3×3, 5×5, 9×9, 13×13, 15×15, 19×19, 23×23, 25×25 and
31×31. As a result, they were able to experiment with dif-
ferent sizes, and they compared the accuracy result based on
different filter sizes. Through this paper, we realized that we
have to keep factors like dimension of filter size or hyperpa-
rameters in mind as well when designing our model.

3. DATASET

The dataset used for this project is the German Traffic Sign
Detection benchmark . This data has a total of 51,830 images
each of dimension (32 x 32 x 3), 3 signifying the RGB chan-
nels of the colored images. The dataset was further split into
34799 training, 4410 validation and 12630 test images.

4. METHODOLOGY

In this section, the data preprocessing techniques as well as
implemented CNN based architectures alongside training de-
tails and evaluation metrics are discussed in detail.

4.1. Data Preprocessing

Upon some initial analysis, it was noticed that there was high
class imbalance in the dataset. Figure 1a shows the data count
per class. If the model is trained on this dataset, it poses
a problem as this makes the model biased towards the class
with higher data frequency. To resolve this, data augmenta-
tion was performed. Images from low frequency classes were
picked up and random rotation and brightness variation was
performed. Eventually, data was normalized for all classes
and results are represented in 1b. Then, standardization was
performed on the data to normalize its mean and make it unit
variance.

Fig. 1: a) Class distribution in original training data. b) Class
distribution after data preprocessing

4.2. Models Implemented

In this section, we discuss the different models implemented
and the proposed novel implementation as well. As said ear-
lier, we began by taking a simple CNN architecture VGG-
19. We then went on to selecting deeper neural networks with
skip connections like ResNet and DenseNet. Additionally, we
explored the performance of Inception Module in GoogleNet.
We also implemented RNN to see if the image pixels have any
sequential relation which can be exploited to boost the perfor-
mance. Seeing the results, we proposed a novel architecture.

4.2.1. VGG-19

We started off with a simpler highway architecture VGG-19
that was trained from scratch to classify traffic signs. It uses
only 19 layers and has a relatively simpler architecture as it
does not use inter-layer connections.

4.2.2. ResNet50 and DenseNet121

Next, we performed transfer learning on a popular image clas-
sification architecture ResNet50 pretrained on ImageNet The
actual motivation to use ResNet50 which consist of 50 layers
was to strengthen feature propagation across different layers
and encourage feature reuse. It uses skip connections to add
outputs of previous layers to the current layer which helps it
reduce the residual error between the preceding and the cur-
rent layer. Secondly, we tuned DenseNet121 (total 121 layers)
architecture pretrained on ImageNet dataset for traffic sign
detection. DenseNet is the logical extension of the concept
used in building ResNet architecture. The feature maps of all
preceding layers are used as input to the current layer and its
output feature maps are used as input to the subsequent lay-
ers. It connects all layers in a feed forward manner to enhance
feature learning and help the model converge faster.

4.2.3. Inception-V1

Inception-V1 architecture uses inception modules which has
convolution filters of different kernel sizes at a single layer
and concatenate all of the output feature maps before passing
it to the next layer. This architecture helps the classifier to
simultaneously capture global and local feature details of the
input image making it robust to size variations of the object
of interest in the image. Traffic signs in the images of training
data have large variations in their size. For instance, images
of the traffic signs might be at different distances from the
sign board making it appear larger or smaller than the actual
image. Considering this fact, we trained Inception-V1 archi-
tecture from scratch for German traffic sign detection bench-
mark .



4.2.4. Recurrent Neural Network

Another important neural network architecture is Recurrent
Neural Network which uses hidden states of previous layers
as inputs which makes it a suitable choice for sequential in-
puts. This architecture was implemented to explore if there
exist any sequential relationship in the pixels which can be
utilized to boost accuracy.

4.2.5. Proposed CNN architecture

Finally, we implemented a convolution neural network archi-
tecture that has two stacks made up of three convolution lay-
ers followed by one average pooling layer and two fully con-
nected layers. We used batch normalization after every con-
volution layer to avoid exploding and vanishing of gradients
while back propagating across different layers. Dropout layer
was applied after each stack to avoid overfitting. The figure
of the developed architecture is shown in Fig. 2.

Fig. 2: Block Diagram of proposed CNN architecture.
Fully connected layer is abbreviated as fc.

The first two convolution layers have 32 convolution fil-
ters with kernel size = 3. Grid Search over different kernel
dimensions: 3, 5, 7, 9, 11, 19 and 31 for convolution lay-
ers was performed. The highest accuracy was achieved with
kernel size = 3. ReLU activation function was used as a non-
linearity after each convolution layer which set negative input
to zero. We did not use MaxPooling layer after every con-
volution layer to avoid losing spatial information of feature
maps at early stages. Subsequent three convolution layers

have 64 convolution filters each to increase the receptive field.
Moreover, the last convolution layer has 128 convolution fil-
ters. This is followed by an average pooling layer to gather
essence of all received feature maps. Its output is given to a
fully connected hidden layer consisting of 512 neurons. Final
output layer has 43 neurons with softmax as activation func-
tion to calculate the probability corresponding to 43 classes
of GTSDB dataset . Most of this architecture was designed
using Random Search for various parameters.

4.3. Training Details

All of architectures were trained using an adam optimizer at
a learning rate = 0.001 s with batch size = 250 and epochs =
100. However, ResNet50 and DenseNet121 were trained and
tuned at a slightly lower learning rate = 0.001 to avoid erasing
pretrained weights. As this is a classification problem, cate-
gorical cross entropy loss function was used. All of the ex-
periments were performed in python using Keras framework
[9].

4.4. Evaluation Metrics

We evaluated the performance of all aforementioned models
using classification accuracy. We also computed confusion
matrix for predictions corresponding to each model to esti-
mate precision and recall for each output class.

5. RESULTS

After executing the experiments for different models, best re-
sults for each model were noted. Figure 3b depicts valida-
tion accuracy achieved for each model over 100 epochs. First
thing to be observed is that all models give an accuracy above
80% in the final training stage. VGG-19 gives the best per-
formance (98.57%) amongst all the models and the new im-
plementation(given by ”OurModel”) gives comparable accu-
racy (98.27%) as well. Another critical observation is that
RNN gives worst performance (89.54%) on validation data.
This might be because the image pixels do not show good se-
quential relationship. Further, it can be noticed that models
using skip connections, i.e. ResNet and DenseNet and Incep-
tion Module, i.e. GoogleNet give decent accuracy as well. A
key observation in this plot is the accuracy in initial training
stages. Although VGG-19 gives slightly higher accuracy, its
initial accuracy is quite low. On the other hand, our proposed
model gives decent initial accuracy.

Next, we observed the trends in all training, validation and
testing accuracy at respective best hyperparameters settings
represented by Figure 4. Training accuracy goes to around
100% for all models. The highest test accuracy is given by
VGG-19 (98.12%) and our proposed model gives an accu-
racy of (97.71%). As expected, RNN gives the worst perfor-
mance (89%) and ResNet (94.8%), DenseNet (95.59%) and



(a) Validation Loss Curve (b) Validation Accuracy Curve

Fig. 3: Validation Loss and Accuracy curve over different number of Epochs

GoogleNet (95.16%) give intermediate performance. The
next criteria these models were judged on is evaluation time.
Figure 5 represents evaluation time taken by each model to
predict labels corresponding to the entire test dataset. Clearly,
best results were achieved by our proposed solution perform-
ing around three times faster than VGG19. Furthermore,
RNN not only gives the worst accuracy, it is also the slowest
model. Additionally, we wanted to explore the roughly 2%

Fig. 4: a) Training accuracy b) Validation accuracy and c)
Test accuracy for all models at their respective best hyperpa-
rameters setting.

of the test images for which our model did not perform well.
A few examples are shown in Figure 6. It is quite evident
that predicting signs for these images is quite difficult (even
for the human eye) as they are either too blurry or too dark.
Hence, our model does not perform well to classify these
images.

Fig. 5: Evaluation time for different models.

Fig. 6: Incorrectly Classified Examples.

6. CONCLUSION

In this project, various deep learning models were compared
not just in terms of their classification accuracy, but also in
terms of their prediction speed. Recurrent Neural Networks
do not perform well as compared to Convolutional Neural
Networks in terms of both accuracy and evaluation time for
image classification purpose. One thing to be noted is that
even simpler architectures namely, our proposed implemen-
tation and the VGG-19 outperform much more complicated,
deep neural networks. Thus, performance of a particular
model totally depends on the problem and data at hand and it
is not necessary for deeper neural networks to always surpass
the rest. Additionally, our proposed model gives the best
response time while providing reasonable accuracy.



7. REFERENCES

[1] statista. car production: number of cars produced world-
wide 2018, 2020.

[2] Darrell Etherington. Over 1,400 self-driving vehicles are
now in testing by 80+ companies across the us, 2019.

[3] Kelsey Piper. It’s 2020. where are our self-driving cars?,
2020.

[4] Imagenet large scale visual recognition challenge, 2017.

[5] S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-
Jimenez, H. Gomez-Moreno, and F. Lopez-Ferreras.
Road-sign detection and recognition based on sup-
port vector machines. Trans. Intell. Transport. Sys.,
8(2):264–278, June 2007.

[6] Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang,
Baoli Li, and Shimin Hu. Traffic-sign detection and clas-
sification in the wild. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2016.

[7] Pierre Sermanet, David Eigen, Xiang Zhang, Michael
Mathieu, Rob Fergus, and Yann LeCun. Overfeat: Inte-
grated recognition, localization and detection using con-
volutional networks, 2013.

[8] Valentyn Sichkar and Sergey Kolyubin. Effect of various
dimension convolutional layer filters on traffic sign clas-
sification accuracy. Scientific and Technical Journal of In-
formation Technologies, Mechanics and Optics, 19:546–
552, 06 2019.

[9] Francois Chollet et al. Keras, 2015.



Individual contributions

The presentation and report were created and written collaboratively with the same
amount of effort.

• Hafiza Rimsha Rauf

- Implemented Inception-V1 and proposed architecture
- Compiled results of each model and visualizations

• Sepehr Foroughi Shafiei

- Implemented ResNet50 and DenseNet121 architectures

• Yashdeep Singh

- Worked on the Data Preprocessing
- Implemented RNN and VGG19 architectures

1



Critique Response

by Group 36

We thank our peers for going through our presentation and appreciate their response.
Here, we try to clarify any pertaining doubts.

1 Response to Group 64

Impressive work! Group 36’s project on Traffic Sign Detection using Deep Learning works
with a dataset of 51,839 images of 43 classes. We thought the project was very thorough
particularly in establishing the problem and motivation behind it. The effort put in with
regards to comparing networks and gathering results was meticulous, and they are very
clear about how they plan to improve further. Good job!
- Thank you for your appreciation.

Improvements/Unclear points:

• For data processing, it is a little odd how the gap between classes with larger
frequency and smaller frequency was able to be filled up.
- The main purpose of data augmentation is to solve class imbalance
problem. We solved this issue by picking up an image randomly from
class with low frequency, rotating them randomly between -15 to 15
degrees, changing their brightness randomly and appending these images
to the training set. This step is repeated till it fills up the class with
smaller frequency, thereby settling the class imbalance issue.

• In the PPT models slide, not every model was clearly shown (although in video
models were very clearly shown)
- This is because in the model slide, all models have been stacked one
top of the other using animation. So, it’ll look fine when you present it.

2 Response to Group 66

Firstly, we really love the background information and we learned that 2.5 million au-
tomobiles were produced in the United States while over 1,400 self-driving vehicles are
now in testing by 80 companies, but in the future 10 million self-driving cars were pre-
dicted to be on the road by 2020 while there have been several fatal accidents about the
autonomous vehicles, because this background shows the importance of the traffic sign
detection for the autonomous vehicles. Secondly, about the dataset. We really appreciate
the variety of the pictures they have picked, including pictures in really dark settings
to mimic autonomous driving in night scenarios, blurry pictures to simulate fast moving
scenarios and some pictures with broken signs to simulate real life scenarios. However,
they chose 34799 out of 51839 pictures to be the training set, and I think this ratio (67%)
is rather low because the training set ratio should be at least 70% conventionally for

1



the model to reach highest accuracy. But overall, we are really impressed by the quality
and quantity of the dataset, which is one of the most important aspects for a machine
learning project to work satisfactorily. Thirdly, about the model. We think the model is
very meticulously and accurately designed, especially the three dropout layers that they
utilized, it is very beneficial because it prevents overfitting. Also the final test accuracy
shows that their model is placed second in accuracy, only worse than VGG19. So overall
I think their project is quite successful.
- Thanks for your diligent and encouraging review.
- Your second point on the split of training and test data is an excellent one
and totally valid in this context. However, we would like to make a clarifi-
cation on that. The reason we restricted the training data to just 34,799 is
because later on, we performed data augmentation on the training data to
fix class imbalance, as mentioned in the presentation. After the data aug-
mentation, our training data became a total of 86,989 images which is around
83.62% of the entire data.

3 Response to Group 59

Presentation-wise, the slides styles are consistent and the transitions between each mem-
ber are smooth. Images you use are a good representation of your topics.
Contents-wise, I really like the idea of introducing motivations (i.e. why you are doing
this) for basically everything you did. For example, you explained why you did the data
augmentation, and where your final simplified model came from. It is also good to see
that you evaluate your model not solely on accuracy, but use prediction time as one of
your evaluation tools to compare different models. It makes your new implementation
stand out.
- Thanks for your kind words.

Possible improvements:

• It might be a good idea to connect literature surveys with your solutions - I think
literature review could be useful in your implementation. It might be an overkill
but worth mentioning.
- We absolutely agree that literature reviews should be linked to our
implementation. We in fact, did mention it in our presentation. If you
have a look from 3:56 in the presentation, we mentioned that this paper
is what we’re inspired from.

• I feel you could mention more about how you preprocess the data to feed into your
networks, not just your train/validation/test split.
-We did mention data preprocessing quite comprehensively in the presen-
tation from 5:05 to 6:18. We will try to explain it again here if it was not
clear. Upon some initial analysis, it was noticed that there was high class
imbalance in the dataset. Had the model been trained on this dataset,
it would’ve posed a problem by making the model biased towards the
class with higher data frequency. To resolve this, data augmentation was
performed. Images from low frequency classes were picked up and ran-
dom rotation and brightness variation was performed. Eventually, data
was normalized for all classes and results. Then, standardization was
performed on the data to normalize its mean and make it unit variance.

2



• Maybe you could explain why you choose other networks as your benchmark.
- The way we conducted this experiment was by increasing complexity
step by step. So, first we chose VGG-19, a simple CNN, tuned its hyper-
parameters and noted the best results. We further went looking for more
and more complicated models like ResNet and DenseNet. Next, we took
up GoogleNet to see how the inception module perform for this scenario.
In the end, we even went beyond CNN to see how RNN, specifically
LSTM, performs on this problem.

• Loss of the model could also be included in your presenation/report.
- We did plot the loss curves and it represented the exact inverse of
accuracy plots. So, we thought it would be redundant to add in the
presentation. We’re adding them here for your reference.

• I feel a small summary or conclusion would make your video more complete.
- In summary, our newly proposed implementation gave us a significant
accuracy (around 97.71%) with the best response time.

3


