How do we solve it and what does the solution look like?

KF/PFs offer solutions to dynamical systems, nonlinear in general, using
prediction and update as data becomes available. Tracking in time or space
offers an ideal framework for studying KF/PF.



-
The Model

Consider the discrete, linear system,
xk—|—1:kak+wk7 k:071727'°'7 (1)

where
* X, € R"is the state vector at time

e M, € R™"is the state transition matrix (mapping from time
to fx. 1) or model

e {(w, e R"k=0,1,2,...} is a white, Gaussian sequence, with
w, ~ N(0,Qy), often referred to as model error

* Q, € R™"is a symmetric positive definite covariance matrix
(known as the model error covariance matrix).
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The Observations

We also have discrete, linear observations that satisfy

Ve = HeXi +Vvi, kK=1,23,..., (2)
where
* Yy« € RP is the vector of actual measurements or observations
at time

 H, € R"™P is the observation operator. Note that this is not in
general a square matrix.

e {vp e RP;k=1,2,...} is a white, Gaussian sequence, with
v, ~ N(0, Ry), often referred to as observation error.

* Ry € RP*P is a symmetric positive definite covariance matrix
(known as the observation error covariance maitrix).

We assume that the initial state, Xo and the noise vectors at each
step, {wg}, {vk}, are assumed mutually independent.
50f 32



Summary of the Kalman filter

Prediction step

Mean update: S(\k—|—1|k = Mkik|k

Covariance update: Pritik = MePycM] + Q.
Observation update step

Mean update: Xk = Xik—1 + Ki(Ye — HeXg—1)
Kalman gain: Ki = Prk_1H] (HkPyk_1H™ + Ry) ™!
Covariance update: Piik = (I = KeHg)Pyik—1.

Field
value

pp=e”

time
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CAGLARS HOMEWORK

1. Assume that we are trying to track a whale. We assume that the

whale moves up and down relatively slowly and is going at a

constant velocity radially. Show that state equation for the whale
(s) can be given as below where z, r, and v are depth, range, and

the speed of the whale, v;and va. are vertical depth errors and

radial acceleration error terms. At is the time between
measurement k and k-1.

S =
_ZS_ _
Ts —
L Us ] L

We use sonar that measures r and z at every k with zero mean

oo

o = O

0
At
1

S S S
r—1Sk—1 + Br_1V k1

k-1

Gaussian measurement noise values w:

Y = li]k + VM;:L

_|_

1 0

A2
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M

Prediction step

We first derive the equation for one-step prediction of the mean
using the state propagation model (1).

Xirik = E[Xep1]V1,-- Vil

k+l1lk

E [Mka -+ Wk] ,
= MiXgx (5)

mesurement

X, = Mx,, + Bw

X = E1X 0 Y0y = M,
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The one step prediction of the covariance is defined by,

Piiik =E [(Xk+1 — Xk 11k) Xk 1 — Xew11h) T IY1, - -Vk} . (6)

Exercise: Using the state propagation model, (1), and one-step
prediction of the mean, (5), show that

Pii1ik = McPyxM] + Q. (7)

mesurement

X = MX,, + Bw
Py = ElX iy = X)) Ko =X ) 1¥15-,¥, 1= MP, M" + BQB'
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Bayesian Framework

m : model parameter vector (unknown parameters to be estimated)
d : data vector relating to m via an equation h(.)
d = h(m) + noise

Classical parameter estimation framework: Unknown but deterministic m
Bayesian parameter estimation framework: Unknown and random variable m

Bayes’ Formula

p(m,d) = p(mld)p(d)= p(dIm)p(m)

POSTERIOR LIKELIHOOD PRIOR
4 A \ I_A \
p(djm)p(m) p(dlm)p(m)
p(m|d) - -
p(d) [ p(djm)p(m)dm
G J

~
EVIDENCE



Bayes Sequential updates

p(mld)x p(dIm)p(m)

Consider d consisting of two independent data set

rd,,d,)=p(d)p(d,)

p(mld)=p(mld,,d,)
_ p(d,ld;,m)p(mld,)

pd,ld))
_ p(d, d,,m) p(d, Im)p(m)
pd,) p(d,)

« p(d, Im)p(d, Im)p(m)

Generalizing

p(m!d) <[] p@@, im)pm)

Thus, in principle with no measurement equation,
you can update sequentially or just at once



Inversion, Filtering and Smoothing

px, ly,): Inversion |, Only observations at time ¢

p(x, ly.): Filter , Observations from time 1:7

pPX, ly.): Smoother, Observations from time 1:T
P,y ): Predictor, t >T Observations from time 1:T

X, = fio (X, Vi) >

\ /
Vi = (X, W,) © °
Xxk-1
o O (0] k-2
oOQ\
0 previous
0]
o states
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A Single Kalman Iteration

X, = F/\'—lx/\—l TV,

Y =H,x, +w, . Predict the mean X,,_, using previous history.

-
X ~ N (X, Pyp) p(x, | x,_,) %
)
X &k\k—l = E{Xk | Xk—1}= f X, P(X, | X, )dx, QI
§k|k 5o X -1
Predict the covariance Pk|k_1 using previous history.
LCPND TS GEPRTLIS &) / OXM
P [ Y6 ¥i oY) Oxk_2
o© 0®
0 3. Correct/update the mean using new data y,
-
o \ S
X, |Y
0 previous p(x, [ Y,) :(U>
states °
o) Xk = E{Xk |Yk}=ka p(x, | Y, )dx, |-_||-|
0 4. Correct/update the covariance Pklk using y,

e =>p(x, | Y, ) =p(x | Y)=p(x, [ Y,) ="

PREDICTOR-CORRECTOR DENSITY PROPAGATOR
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Data assimilation fuses information from (1) prior, (2) model, (3)
observations to obtain consistent description of a physical system

Transport

Optimal analysis state
Met

Chemical kinetics

Improved:

e forecasts
l e science
[ : » field experiment design
7 e models

e emission estimates

Virini
@l_]:’ Sep. 7, 2011. SAMSI UQ Methodology Workshop. WTéch



Source of information #1: the prior encapsulates our
current knowledge about the state of the system

» Background (prior) pdf: PP(x)

» Current best estimate:
background state x°.

» Typical assumption:

e® = x° — S(x"™) € N (0,B) .

» With nonlinear models the
normality assumption is
difficult to justify, but is
nevertheless used because of
ItS convenience.

Virini
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Correct models of background (prior) errors are very
important for data assimilation

e Background error representation determines the spread of information,
and impacts the assimilation results

e Needs: high rank, capture dynamic dependencies, efficient computations
e Traditionally estimated empirically (NMC, Hollingsworth-Lonnberg)

1. Tensor products of 1d 20\
correlations, decreasing with 15| R
distance (Singh et al, 2010)

2. Multilateral AR model > o[ =
(Constantinescu et al 2007) e

3. Hybrid methods in the context of o -
4D-Var (Cheng et al, 2009) S

[Constantinescu and Sandu, 2007] X

Virini
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Source of information #2: the model encapsulates our
knowledge about the physical laws that govern the
evolution of the system

» The model evolves an initial How large are the models of interest?

: o )
state X, € R” to future times Typlce?lly 0O(10°) va_rlables, and O(10)
different physical processes

Wy 47 o

LONG-WAVE SHORT-WAVE CHg OXIDATION
RADIATION RADIATION

Xj = Myt (Xo) -

» The model is imperfect

( CLOuD

ey — true) _ ..
S (X,- ) = My_-4-S (xi—1 ) i, ity

DEEP

CLOUD SUBGRID-SCALE

where 7; is the model error in CONVECTION
Step i- SHALLOW tTURBULENT DIFFUSION
CONVECTION
it J‘t Latemﬁegb'e (\‘> ()
; :EH Long-wave Short-wave heat oat flux

flux flux  flux SURFACE

AT WIND WAVES
Picture: L. Isaksen (http://www.ecmwf.int) OCEAN MODEL

Virginia
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Source of information #3: the observations are sparse
and noisy snapshots of reality

» Measurements y; € R™ (m < n) taken attimes ty,..., Iy
Vi = Ht ( true) . glnstrument — H (S(xgrue)) . €<i)bs’ J = 1’. . ,N.

» Observation operators

» H': physical space — observation space, while
» H : the model space — observation space.

» The observation error

x106 24hr’

E;)bs _ 8}nstrument +H ( S(Xtrue)) rHt ( true)
H/_/ N v

N~

instrument error representativeness error

» Typical assumptions:

e c N(0,R)); &, 5be independent for #; # ;.

0

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

How many observations? ECMWF: O(10/) Lars Isaksen (http: //WWW ecmwi. int)
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Some conventional and remote data sources used at
ECMWF for numerical weather prediction

e

R/SHIP: pres., wind, RH

=0 s0m

ESL

)
a0

Sep. 7, 2011. SAMSI UQ Methodology Workshop.

13 Sounders: NOAA AMSU-A/B, HIRS, AIRS, ...

Lars Isaksen (http://www.ecmwf.int)
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Geostationary, 4 IR and 5 winds



To allow model-data comparison, observation operators
map the model state space to observation space
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