
KF/PFs offer solutions to dynamical systems, nonlinear in general, using 
prediction and update as data becomes available. Tracking in time or space 
offers an ideal framework for studying KF/PF. 

How do we solve it and what does the solution look like? 

The Model

Consider the discrete, linear system,

xk+1 = Mkxk + wk , k = 0, 1, 2, . . . , (1)

where
• xk 2 Rn is the state vector at time tk
• Mk 2 Rn⇥n is the state transition matrix (mapping from time tk

to tk+1) or model
• {wk 2 Rn; k = 0, 1, 2, . . .} is a white, Gaussian sequence, with

wk ⇠ N(0,Qk ), often referred to as model error
• Qk 2 Rn⇥n is a symmetric positive definite covariance matrix

(known as the model error covariance matrix).
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The Observations
We also have discrete, linear observations that satisfy

yk = Hkxk + vk , k = 1, 2, 3, . . . , (2)

where
• yk 2 Rp is the vector of actual measurements or observations

at time tk
• Hk 2 Rn⇥p is the observation operator. Note that this is not in

general a square matrix.
• {vk 2 Rp; k = 1, 2, . . .} is a white, Gaussian sequence, with

vk ⇠ N(0,Rk ), often referred to as observation error.
• Rk 2 Rp⇥p is a symmetric positive definite covariance matrix

(known as the observation error covariance matrix).
We assume that the initial state, x0 and the noise vectors at each
step, {wk}, {vk}, are assumed mutually independent.
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Summary of the Kalman filter
Prediction step
Mean update: bxk+1|k = Mkbxk |k
Covariance update: Pk+1|k = MkPk |kMT

k + Qk .

Observation update step
Mean update: bxk |k = bxk |k�1 + Kk (yk � Hkbxk |k�1)
Kalman gain: Kk = Pk |k�1HT

k (HkPk |k�1HT + Rk )
�1

Covariance update: Pk |k = (I � KkHk )Pk |k�1.
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Prediction step

We first derive the equation for one-step prediction of the mean
using the state propagation model (1).

bxk+1|k = E [xk+1|y1, . . . yk ] ,

= E [Mkxk + wk ] ,

= Mkbxk |k (5)
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k+1|kk+1|k

mesurement
xk+1|k =Mxk|k +Bw
⌢xk+1|k = E[xk+1|k | y1,..., yk ]=Mx̂k|k

CAGLARS HOMEWORK 

The one step prediction of the covariance is defined by,

Pk+1|k = E
h
(xk+1 � bxk+1|k )(xk+1 � bxk+1|k )

T |y1, . . . yk

i
. (6)

Exercise: Using the state propagation model, (1), and one-step
prediction of the mean, (5), show that

Pk+1|k = MkPk |kMT
k + Qk . (7)
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mesurement
xk+1|k =Mxk|k +Bw
Pk+1|k = E[(xk+1|k − x̂k+1|k )(xk+1|k − x̂k+1|k )

T | y1,..., yk ]=MPk|kM
T +BQBT

CAGLARS HOMEWORK 



m : model parameter vector (unknown parameters to be estimated) 
d : data vector relating to m via an equation h(.) 
d = h(m) + noise 
 
 
Classical parameter estimation framework: Unknown but deterministic m 
Bayesian parameter estimation framework: Unknown and random variable m 
 
Bayes’ Formula 

Bayesian Framework 

p(md) =
p(dm)p(m)

p(d)
=

p(dm)p(m)

p(dm)p(m)dm∫

PRIOR LIKELIHOOD 

EVIDENCE 

POSTERIOR 

p(m,d) = p(m | d)p(d) = p(d |m)p(m)

Sequential updates Bayes

p(m |d)∝ p(d |m)p(m)

Consider d consisting of two independent data set

p(d1,d2 ) = p(d1)p(d2 )

p(m |d) = p(m |d1,d2 )

=
p(d2 |d1,m)p(m |d1)

p(d2 |d1)

=
p(d2 |d1,m)

p(d2 )
p(d1 |m)p(m)

p(d1)

∝ p(d2 |m)p(d1 |m)p(m)

Generalizing

p(m |d) ∝
i=1

N

∏ p(di |m)p(m)

Thus, in principle with no measurement equation,  
you can update sequentially or just at once 



Inversion, Filtering and Smoothing 
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p(x t | y t ) : Inversion, Only observations at time t

p(x t | y1:t ) : Filter, Observations from time 1: t

p(x t | y1:T ) : Smoother, Observations from time 1:T

•  The objective is then to track the evolving distributions. 
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1.  Predict the mean          using previous history. 

2.  Predict the covariance           using previous history. 

3.  Correct/update the mean using new data yk 

4.  Correct/update the covariance          using yk 
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Product(of(Gaussians=Gaussian:(
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Example: Measuring the mass of an object 

p(d|m) � exp
½
c1
2
(dcGm)TCc1d (dcGm)

¾

� exp
½
c1
2
[(dcGm)TCc1d (dcGm) + (mcmo)

TCc1m (mcmo)]

¾

The more accurate new data has changed the estimate of m and 
decreased its uncertainty  

For the general linear inverse problem we would have

p(m) � exp
½
c
1

2
(mcmo)

TCc1m (mcmo)

¾
Prior:

Likelihood:

Posterior PDF

One data point problem 

∝ exp −
1
2
m− m̂[ ]T S−1 m− m̂[ ]

#
$
%

&
'
(

S−1 =GTCd
−1G+Cm

−1

m̂ = GTCd
−1G+Cm

−1( )
−1
GTCd

−1d+Cm
−1m0( )

= m0 + G
TCd

−1G+Cm
−1( )

−1
GTCd

−1 d−Gm0( )

Peter’s slide from last week 

DATA ASSIMILATION 



Basic estimation theory 

Observation: T0 = T + e0!

First guess:   Tm = T + em!

E{e0}  = 0!
E{em} = 0!

Assume a linear best estimate:  Tn = a T0 + b Tm !
with Tn = T + en .!

1) Gives:  E{en} =    E{Tn-T}       =     E{aT0+bTm-T}    = !
                           =   E{ae0+bem+ (a+b-1) T}  =  (a+b-1) T  =  0!
    Hence b=1-a.!

Find a and b such that !
1) E{en} = 0            2) E{en

2} minimal!
 !

E{e0
2}   = s0

2!

E{em
2}  = sm

2!

E{e0em} = 0!

Basic estimation theory 

2) E{en
2} minimal  gives:!

!
    E{en

2} = E{(Tn –T)2}     = E{(aT0 + bTm – T)2}  =!
                = E{(ae0+bem)2} = a2 E{e0

2} + b2E{em
2} =!

                = a2 s0
2 + (1-a)2 sm

2!

a = __________    and !sm
2!

s0
2 + sm

2!

This has to be minimal, so the derivative wrt a has to be zero:!
2 a s0

2 - 2(1-a) sm
2 = 0,    so   (s0

2 + sm
2)a – sm

2 = 0,  hence:!
!

b = 1-a  = __________ !s0
2!

s0
2 + sm

2!

sn
2 = E{en

2} = ______________ = ________  !
(s0

2 + sm
2)2!

sm
4 s0

2 + s0
4 sm

2 ! s0
2 sm

2!

s0
2 + sm

2!



Solution:   Tn = _______ T0  + _______ Tm!
sm

2! s0
2!

s0
2 + sm

2! s0
2 + sm

2!

___ = ___ + ___!1! 1! 1!
sm

2!s0
2!sn

2!
and!

Note:   sn smaller than s0 and sm !!

Basic estimation theory 

Best Linear Unbiased Estimate  BLUE!

Just least squares!!!!
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Data assimilation fuses information from (1) prior, (2) model, (3) 

observations to obtain consistent description of a physical system 

Optimal analysis state 

Chemical kinetics 

Aerosols 

CTM 

Transport 

Meteorology 

Emissions 

Observations 
Data  

Assimilation 

Targeted  
Observ. 

Improved: 

• forecasts 

• science 

• field experiment design 

• models  

• emission estimates 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 

Source of information #1: the prior encapsulates our 
current knowledge about the state of the system 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 



Correct models of background (prior) errors are very 
important for data assimilation 

• Background error representation determines the spread of information, 
and impacts the assimilation results 
• Needs: high rank, capture dynamic dependencies, efficient computations 
• Traditionally estimated empirically (NMC, Hollingsworth-Lonnberg) 

1. Tensor products of 1d 
correlations, decreasing with 
distance (Singh et al, 2010) 

2. Multilateral AR model 
(Constantinescu et al 2007) 

3. Hybrid methods in the context of 
4D-Var (Cheng et al, 2009) 

[Constantinescu and Sandu, 2007] 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 

Source of information #2: the model encapsulates our 
knowledge about the physical laws that govern the 

evolution of the system 

Picture: L. Isaksen (http://www.ecmwf.int) 

How large are the models of interest? 
Typically O(108) variables, and O(10) 

different  physical processes 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 



Source of information #3: the observations are sparse 
and noisy snapshots of reality 

Lars Isaksen (http://www.ecmwf.int) How many observations? ECMWF: O(107) 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 

Some conventional and remote data sources used at 
ECMWF for numerical weather prediction 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 

SYNOP/METAR/SHIP: pres., wind, RH Aircraft: wind, temperature 

Lars Isaksen (http://www.ecmwf.int) 

13 Sounders: NOAA AMSU-A/B, HIRS, AIRS, …  Geostationary, 4 IR and 5 winds 



Model  
Radiance 

To allow model-data comparison, observation operators 
map the model state space to observation space 

Model 
T and q 

H compare 
Observation 

Satellite Radiance 

oJ

Lars Isaksen (http://www.ecmwf.int) 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 

Result of DA: the analysis, which encapsulates our 
enhanced knowledge about the state of the system 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 



Result of DA: the analysis, which encapsulates our 
enhanced knowledge about the state of the system 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 

Result of DA: the analysis, which encapsulates our 
enhanced knowledge about the state of the system 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 



The ensemble Kalman filter (EnKF) is based on EKF, 
and uses a MC approach to propagate covariances 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 

[Picture from J.L. Anderson] 
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The ensemble Kalman filter (EnKF) is based on EKF, 
and uses a MC approach to propagate covariances 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 
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The ensemble Kalman filter (EnKF) is based on EKF, 
and uses a MC approach to propagate covariances 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 

[Picture from J.L. Anderson] 
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The ensemble Kalman filter (EnKF) is based on EKF, 
and uses a MC approach to propagate covariances 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 

[Picture from J.L. Anderson] 
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The ensemble Kalman filter (EnKF) is based on EKF, 
and uses a MC approach to propagate covariances 

Sep. 7, 2011. SAMSI UQ Methodology Workshop. 

[Picture from J.L. Anderson] 


