How do we solve it and what does the solution look like?

KF/PFs offer solutions to dynamical systems, nonlinear in general, using
prediction and update as data becomes available. Tracking in time or space
offers an ideal framework for studying KF/PF.

e
The Model

Consider the discrete, linear system,
xk+1:kak+wk7 k2071727"'7 (1)

where
e X, € R"is the state vector at time tx

* M, € R™" s the state transition matrix (mapping from time f
to tx11) or model

e {wy e R k=0,1,2,...} is a white, Gaussian sequence, with
w, ~ N(0,Qy), often referred to as model error

* Qx € R™"is a symmetric positive definite covariance matrix
(known as the model error covariance matrix).
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The Observations

We also have discrete, linear observations that satisfy

yk:Hkxk+Vk; k:172737"'7 (2)
where
* yi € RP is the vector of actual measurements or observations
at time

e H, € R™P is the observation operator. Note that this is not in
general a square matrix.

e {vk e RP; k =1,2,...} is a white, Gaussian sequence, with
vi ~ N(0, Rk), often referred to as observation error.

* R, € RP*Pis a symmetric positive definite covariance matrix
(known as the observation error covariance matrix).

We assume that the initial state, Xo and the noise vectors at each

SE‘E& {w}, {vk}, are assumed mutually independent.

Summary of the Kalman filter
Prediction step

Mean update: X1k = MXe

Covariance update: Pk = McPyM] + Q.
Observation update step

Mean update: Xk = Xir—1 + Kk (Yk — HiXii—1)
Kalman gain: Kk = Prk—1H] (HkPy—1H™ + Ry) ™
Covariance update: Prik = (1 — KkHk)Prik—1-

Field
value

ppses
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M

Prediction step

We first derive the equation for one-step prediction of the mean
using the state propagation model (1).

Xerk = EXkpaly1,-- Yl

k+1lk

E [MgXk + W],
= MXyk (5)

mesurement

X = MX, + Bw

X = ElX e 1Y 150 ¥ 1= MX
9 of 32

The one step prediction of the covariance is defined by,

Pri1k =E [(Xk+1 — Xpe1k) (Xke1 _/ik+1|k)T|y1,---yk] . (6)

Exercise: Using the state propagation model, (1), and one-step
prediction of the mean, (5), show that

Pi 1k = McPgxkM] + Qi (7)

mesurement

X = Mx, + Bw
Pk+1|k = E[(Xk+llk - §k+llk )(Xk+llk - ﬁk+llk)T | YI""’Yk] = MPkaMT + BQBT

10 of 32
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Bayesian Framework o

m : model parameter vector (unknown parameters to be estimated)

d : data vector relating to m via an equation h(.)

d = h(m) + noise

Classical parameter estimation framework: Unknown but deterministic m
Bayesian parameter estimation framework: Unknown and random variable m

Bayes’ Formula

p(m,d)= p(m|d)p(d)= p(d|Im)p(m)

POSTERIOR LIKELIHOOD PRIOR
p(d‘m)p(m) p(d‘m)P(m)
p(m|d)= -
p(d) J p(djm)p(m)dm
N ~ J
EVIDENCE
Bayes Sequential updates

p(mld) e p(dim)p(m)

Consider d consisting of two independent data set

p(d,,d,)=p(d)p,)

p(mld)=p(mld,.d,)
_ p(d,|d,,m)p(mid,)

p@d,1d,)
_p(d, 1d;,m) p(d, | m)p(m)
r(d,) r(d,)

« p(d, lm)p(d, Im)p(m)

Generalizing

p(mld) <[] p(d; 1m)p(m)

Thus, in principle with no measurement equation,
you can update sequentially or just at once




Inversion, Filtering and Smoothing

p(x,ly,): Inversion, Only observations at time ¢

p(x,ly,,): Filter, Observations from time 1:¢

p(x,ly,,): Smoother, Observations from time 1:7
X, = fio (X V) X sz
-y TS0 o
Yy =h (X, W) 0
x Xy-1
o O (0] k-2
SN
(0}
0 previous
0]
o states
P~“‘NE PHYs,c‘q<
I
Lq Ry . .
fonATe A Single Kalman Iteration
g
x, =F_x, +V
yi = H,x, +W 1. Predict the mean ik‘k,l using previous history. -
X ~ N (X, P o) p(x, | X)) I?EI
&)
. iklk—l = E{Xk |Xk—l}=ka (X | X)X, 3
X — X1
* 00 2. Predict the covariance P,{‘H using previous history.
G ND VS FIPEEES 9] / OX“
P Y Yi oY) . Oooxk_2
oo 3. Correct/update the mean using new data y,
'\ C
o
3
o previous PO 1Y) )U>
states ik\k = E{Xk |Yk}=ka p(x, | Y, )dx, |-_||-|
o 4. Correct/update the covariance Py using yy

=X, [ Y ) =p(x, | Y, )= p(x, | Y,) =

PREDICTOR-CORRECTOR DENSITY PROPAGATOR




Peter’s slide from last week

Product of Gaussians=Gaussian:

Posterior

Likelihood GRS
=05

70 100 12 130 70 1096 130
One data point problem

For the general linear inverse problem we would have

Prior: p(m) o< exp {7%(7” - mo) CRt(m — mo)}

Likelihood: p(djm) o exp {—%(d _ Gm)TCd_l(d . Gm)}
Posterior PDF
o exp {—2{(d - Gm)TC; (@~ Gm) + (m — mo)TCpd(m — mo)

. exp{—%[m A §"[m- ﬁl]}
S'=G'C,'G+C,,
=(G'C;G+C;) (G'C;'d+C;'m,)

- m,+(G'C;G+C,') G'C;'(d-Gm,)

DATA ASSIMILATION




Basic estimation theory

Observation: T, =T + ¢, E{e} =0 E{e,?} =s,°
o =

_ Efe,’} =s,’
First guess: T, =T+e, Eten =0 E{ese,} =0

Assume a linear best estimate: T, =aT,+b T,
withT, =T +e,.

Find a and b such that
1)E{e,} =0 2) E{e,*} minimal

1) Gives: E{e,} = E{T,-T} = E{aTy+bT -T} =
E{ae,+be + (a+b-1) T} = (a+b-1)T = 0

Hence b=1-a.

Basic estimation theory

2) E{e ’} minimal gives:

E{e 2} =E{(T,-T)?} =E{(T,+bT, T2} =
= E{(ae,+be,)*} = a? E{e,’} + b’E{e >’} =
=aZs,2+ (1-a)?s,°

This has to be minimal, so the derivative wrt a has to be zero:
2asy-2(1-a)s,2=0, so (s)®+s,2)a—s,>=0, hence:

s 2 S 2
a= m and b=1-a = 0
2 2 2 2
So” + S So” + Sy,
4o 2 4o 2 2¢ 2
5, . S YSpc+Spts 2 S0 s
Sy _E{en}_ m 0 0 °m — 0 °m

(82 + 8,,2)? 8o + 8,2




Basic estimation theory

: S So°
Solution: T = m T, + ©o T

2 2 2 2
So> + Sy So> + Sy

m

Note: s, smaller than s, and s, !

Best Linear Unbiased Estimate BLUE

Just least squares!!!

Tutorial Lecture:
Data Assimilation

Adrian Sandu
Computational Science Laboratory
Virginia Polytechnic Institute
and State University
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Data assimilation fuses information from (1) prior, (2) model, (3)
observations to obtain consistent description of a physical system

Hesa ‘ Optimal analysis state
teorology

Chemical kinetics

Improved:
o forecasts
l e science

.« field experiment design
e models
e emission estimates

Vireini
@l—]:» Sep. 7, 2011. SAMSI UQ Methodology Workshop. W'B’:ch

Source of information #1: the prior encapsulates our
current knowledge about the state of the system

» Background (prior) pdf: P°(x)

» Current best estimate:
background state x°.

» Typical assumption:

GEQS4 0, 060801 at 00:00 GMT Avg from L=1-10 (0.3-7.8 km)

e =x° - S(x™)c N (0,B).

» With nonlinear models the
normality assumption is
difficult to justify, but is
nevertheless used because of
its convenience.

Vireind
csSL Sep. 7, 2011. SAMSI UQ Methodology Workshop. [ Tech




Correct models of backgrou

nd (prior) errors are very

important for data assimilation

e Background error representation determines the spread of information,

and impacts the assimilation results

¢ Needs: high rank, capture dynamic dependencies, efficient computations
e Traditionally estimated empirically (NMC, Hollingsworth-Lonnberg)

1. Tensor products of 1d

correlations, decreasing with
distance (Singh et al, 2010)

Multilateral AR model
(Constantinescu et al 2007)

Hybrid methods in the context of
4D-Var (Cheng et al, 2009)

[Constantinescu and Sandu, 2007]
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Source of information #2: the model encapsulates our
knowledge about the physical laws that govern the

evolution of

» The model evolves an initial
state xg € R to future times

Xj = Myt (Xo) -
» The model is imperfect
S (xs_rue) =My 48 (X?B?)_nia

where 7; is the model error in
step /.

Picture: L. Isaksen (http://www.ecmwf.int)
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the system

How large are the models of interest?
Typically O(108) variables, and O(10)
different physical processes

X!
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Source of information #3: the observations are sparse
and noisy snhapshots of reality

v

Measurements y; € R™ (m <« n) taken attimes t;, ..., ty

Y = Ht (xﬁrue) _ 8iinstrument —H (S(X;-rue)) _ S})bs, f = 1, wu s g N.

v

Observation operators

» H': physical space — observation space, while
» H : the model space — observation space.

The observation error

v

x108 24hr!

5?b5 — Siinstrument + ;H ( S(xgrue)) . th (xslrue)j

v

instrument error representativeness error

v

Typical assumptions:

e c N(0,R)); &%, 5j~’bs independent for # # ;.

0

How many observations? ECMWF: O(107) Lot TR T
Virginia
[E[l_]:, Sep. 7, 2011. SAMSI UQ Methodology Workshop. m’féch

Some conventional and remote data sources used at
ECMWF for numerical weather prediction

Lars Isaksen (http://www.ecmwf.int)

LT T Ty

Geostationary, 4 IR and 5 winds

V
[E[l_]:, Sep. 7, 2011. SAMSI UQ Methodology Workshop. mm




To allow model-data comparison, observation operators
map the model state space to observation space

Lars Isaksen (http://www.ecmwf.int)

Vitginia
csSL Sep. 7, 2011. SAMSI UQ Methodology Workshop. L Tech

Result of DA: the analysis, which encapsulates our
enhanced knowledge about the state of the system

» The analysis (posterior) probability density P?(x):

y|x) - P°(x)
P(y) '

» Best posterior state estimate: the analysis x*.

» Analysis estimation errors ¢* = x* — S(x"°¢) characterized by bias
p* = E? [¢%], covariance A = cov(e* — 5?) € R™".

» Kalman filter: analytical solution for P?(x) in Gaussian, linear case

» Methods of practical interest:

» Suboptimal and Ensemble Kalman filters (~ min. var.)
» Variational methods (MAP)

Bayes: PHx) = P(x|y) = !

Virini
[(Ell_]: Sep. 7, 2011. SAMSI UQ Methodology Workshop. WTéch




Result of DA: the analysis, which encapsulates our
enhanced knowledge about the state of the system

» The analysis (posterior) probability density 7?(x):

y|x) - P°(x)
Ply)

» Best posterior state estimate: the analysis x®.

» Analysis estimation errors ¢* = x* — S(x""¢) characterized by bias
p* = E? [€?], covariance A = cov(e* — %) € R™".

» Kalman filter: analytical solution for P?(x) in Gaussian, linear case

Bayes: PHx) = P(x|ly) = !

Virpini
@L:, Sep. 7, 2011. SAMSI UQ Methodology Workshop. mTech

Result of DA: the analysis, which encapsulates our
enhanced knowledge about the state of the system

» The analysis (posterior) probability density 7?(x):

y|x) - P°(x)
Ply)

» Best posterior state estimate: the analysis x®.

» Analysis estimation errors ¢* = x* — S(x""¢) characterized by bias
p* = E? [€?], covariance A = cov(e* — %) € R™".

» Kalman filter: analytical solution for P?(x) in Gaussian, linear case

Bayes: Px) = P(xly) = P

Virpini
@L:, Sep. 7, 2011. SAMSI UQ Methodology Workshop. mTech




The ensemble Kalman filter (EnKF) is based on EKF,
and uses a MC approach to propagate covariances

3 ensemble members advancing in time

) ) [Picture from J.L. Anderson]
analysis prior

tk/"/_>
- i1
"—-—.__‘___'__'__,-F.'

*
*
*

b(i) _ a(i) @) .
X =M et (Xk )+ L] Pas Sequential approach to DA:
1 & - .1 Incorporates data in succession
B =[x —x; ) (% -x))
K5
Vireini
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The ensemble Kalman filter (EnKF) is based on EKF,
and uses a MC approach to propagate covariances

= L Y Convert
each model state [Picture from J.L. Anderson]
h h h to an
expected observation
tk = h(x
#* tk+1 y ( )
*
-K-,__________'___._'

L - )

HP'H ~ %i(Hk (xt)-H, (! ))(Hk (x")-H, (x! ))T

i=1

Virini
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The ensemble Kalman filter (EnKF) is based on EKF,
and uses a MC approach to propagate covariances

4&.

\Y Compare with

ObSBFVE}tiOﬂ and [Picture from J.L. Anderson]
observational error
distribution

Virini
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The ensemble Kalman filter (EnKF) is based on EKF,
and uses a MC approach to propagate covariances

[Picture from J.L. Anderson]

state variable
increments
(analysis)

Virini
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The ensemble Kalman filter (EnKF) is based on EKF,
and uses a MC approach to propagate covariances

Advance ensemble ...
and repeat ...

[Picture from J.L. Anderson]
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