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TRACKING ALGORITHMS: 

An Introduction to Kalman & Particle Filters 



m : model parameter vector (unknown parameters to be estimated) 
d : data vector relating to m via an equation h(.) 
d = h(m) + noise 
 
 
Classical parameter estimation framework: Unknown but deterministic m 
Bayesian parameter estimation framework: Unknown and random variable m 
 
Bayes’ Formula 

Bayesian Framework 
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p(m,d) = p(m | d)p(d) = p(d |m)p(m)
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measurement equation 

xk : state vector 

yk : measurement vector 

vk : process/state noise vector 

wk : measurement noise vector 

 

Inversion vs. Tracking 

Tracking 
 

Inversion 
 

€ 

dobs = h(m) + e

m    : state vector 

dobs : measurement vector 

 

e     : measurement noise vector 

 

Forward model Forward model 

parameter evolution model 
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Xk−1 = x k−1, !,x0 Yk = y k, !,y0



state equation 

measurement equation 

xt : state vector 

yt : measurement vector 

vt : process noise vector 

wt : measurement noise vector 

 

x: position and speed of a missile,            y : sensor measurement   

x: changing ocean properties,         y : acoustic measurement  

x: financial indicators of stock exchange,          y : stock prices 

x: atmospheric refractivity profile,        y : radar clutter measurement   

x: number of whales in the region,        y : visual and acoustic measurements 

 

 

 

 

 

Dynamic,	  non-‐sta.onary	  system	  

xt = ft(xt�1, vt)
yt = ht(xt, wt)

What is a dynamic, non-stationary system? 

Why do we care? 

vector of parameters 
we want to track 

forward model 

parameter evolution 
model 

measurement Bayesian framework  
xt , yt ,vt , wt : random variables 

 



KF/PFs offer solutions to dynamical systems, nonlinear in general, using 
prediction and update as data becomes available. Tracking in time or space 
offers an ideal framework for studying KF/PF. 

How do we solve it and what does the solution look like? 



Kalman Framework 
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xk , yk ,vk , wk : Gaussian 
Fk , Hk : Linear 

Optimal Filter = Kalman Filter  1963 
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xk-1  
xk-2  

1.  Predict the mean          using previous history. 

2.  Predict the covariance           using previous history. 

3.  Correct/update the mean using new data yk 

4.  Correct/update the covariance          using yk 
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A Single Kalman Iteration 
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PREDICTOR-CORRECTOR DENSITY PROPAGATOR 



The Model

Consider the discrete, linear system,

xk+1 = Mkxk + wk , k = 0, 1, 2, . . . , (1)

where
• xk 2 Rn is the state vector at time tk
• Mk 2 Rn⇥n is the state transition matrix (mapping from time tk

to tk+1) or model
• {wk 2 Rn; k = 0, 1, 2, . . .} is a white, Gaussian sequence, with

wk ⇠ N(0,Qk ), often referred to as model error
• Qk 2 Rn⇥n is a symmetric positive definite covariance matrix

(known as the model error covariance matrix).
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The Observations
We also have discrete, linear observations that satisfy

yk = Hkxk + vk , k = 1, 2, 3, . . . , (2)

where
• yk 2 Rp is the vector of actual measurements or observations

at time tk
• Hk 2 Rn⇥p is the observation operator. Note that this is not in

general a square matrix.
• {vk 2 Rp; k = 1, 2, . . .} is a white, Gaussian sequence, with

vk ⇠ N(0,Rk ), often referred to as observation error.
• Rk 2 Rp⇥p is a symmetric positive definite covariance matrix

(known as the observation error covariance matrix).
We assume that the initial state, x0 and the noise vectors at each
step, {wk}, {vk}, are assumed mutually independent.

5 of 32



The Prediction and Filtering Problems

We suppose that there is some uncertainty in the initial state, i.e.,

x0 ⇠ N(0,P0) (3)

with P0 2 Rn⇥n a symmetric positive definite covariance matrix.

The problem is now to compute an improved estimate of the
stochastic variable xk , provided y1, . . . yj have been measured:

bxk |j = bxk |y1,...,yj . (4)

• When j = k this is called the filtered estimate.
• When j = k � 1 this is the one-step predicted, or (here) the

predicted estimate.
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• The Kalman filter (Kalman, 1960) provides estimates for the
linear discrete prediction and filtering problem.

• We will take a minimum variance approach to deriving the filter.
• We assume that all the relevant probability densities are

Gaussian so that we can simply consider the mean and
covariance.

• Rigorous justifcation and other approaches to deriving the filter
are discussed by Jazwinski (1970), Chapter 7.
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Product(of(Gaussians=Gaussian:(
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Example: Measuring the mass of an object 

p(d|m) � exp
½
c1
2
(dcGm)TCc1d (dcGm)

¾

� exp
½
c1
2
[(dcGm)TCc1d (dcGm) + (mcmo)

TCc1m (mcmo)]

¾

The more accurate new data has changed the estimate of m and 
decreased its uncertainty  

For the general linear inverse problem we would have

p(m) � exp
½
c
1

2
(mcmo)

TCc1m (mcmo)

¾
Prior:

Likelihood:

Posterior PDF

One data point problem 
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Prediction step

We first derive the equation for one-step prediction of the mean
using the state propagation model (1).

bxk+1|k = E [xk+1|y1, . . . yk ] ,

= E [Mkxk + wk ] ,

= Mkbxk |k (5)
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The one step prediction of the covariance is defined by,

Pk+1|k = E
h
(xk+1 � bxk+1|k )(xk+1 � bxk+1|k )

T |y1, . . . yk

i
. (6)

Exercise: Using the state propagation model, (1), and one-step
prediction of the mean, (5), show that

Pk+1|k = MkPk |kMT
k + Qk . (7)
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Filtering Step

At the time of an observation, we assume that the update to the
mean may be written as a linear combination of the observation
and the previous estimate:

bxk |k = bxk |k�1 + Kk (yk � Hkbxk |k�1), (8)

where Kk 2 Rn⇥p is known as the Kalman gain and will be derived
shortly.
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But first we consider the covariance associated with this estimate:

Pk |k = E
h
(xk � bxk |k )(xk � bxk |k )

T |y1, . . . yk

i
. (9)

Using the observation update for the mean (8) we have,

xk � bxk |k = xk � bxk |k�1 � Kk (yk � Hkbxk |k�1)

= xk � bxk |k�1 � Kk (Hkxk + vk � Hkbxk |k�1),

replacing the observations with their model equivalent,
= (I � KkHk )(xk � bxk |k�1)� Kkvk . (10)

Thus, since the error in the prior estimate, xk � bxk |k�1 is
uncorrelated with the measurement noise we find

Pk |k = (I � KkHk )E
h
(xk � bxk |k�1)(xk � bxk |k�1)

T
i
(I � KkHk )

T

+KkE
h
vkvT

k

i
KT

k . (11)
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Simplification of the a posteriori error covariance
formula

Using this value of the Kalman gain we are in a position to simplify
the Joseph form as

Pk |k = (I�KkHk )Pk |k�1(I�KkHk )
T +KkRkKT

k = (I�KkHk )Pk |k�1.
(15)

Exercise: Show this.

Note that the covariance update equation is independent of the
actual measurements: so Pk |k could be computed in advance.
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Summary of the Kalman filter
Prediction step
Mean update: bxk+1|k = Mkbxk |k
Covariance update: Pk+1|k = MkPk |kMT

k + Qk .

Observation update step
Mean update: bxk |k = bxk |k�1 + Kk (yk � Hkbxk |k�1)
Kalman gain: Kk = Pk |k�1HT

k (HkPk |k�1HT + Rk )
�1

Covariance update: Pk |k = (I � KkHk )Pk |k�1.
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Nonlinear      Non-Gaussian 
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KF 

•  h(.) linear                     
Gaussian x è Gaussian y 

•  h(.) non-linear              
Gaussian x è non-Gaussian y 

y = h(x) 

x y 

Now What? 



If Nonlinear à LINEARIZE! 
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Extended Kalman Filter (EKF) 

Gaussian and Linear 
again! à now use KF 


