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LaBoRaTORY

Bayesian Framework

m : model parameter vector (unknown parameters to be estimated)
d : data vector relating to m via an equation h(.)
d = h(m) + noise

Classical parameter estimation framework: Unknown but deterministic m
Bayesian parameter estimation framework: Unknown and random variable m

Bayes’ Formula

p(m,d) = p(mld)p(d)= p(dIm)p(m)

POSTERIOR LIKELIHOOD PRIOR
—_— —* M
p(m g) - 2Aimpmm) - pdm)pm)

p(d) [ p(djm)p(m)dm
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Inversion vs. Tracking

Inversion

d” =h(m)+e <

Forward model

Tracking

parameter evolution model

X, = f,_(X,_,V,) state equation

Yi=h (X, W,)

Forward model

> X, : state vector

m : state vector €

—> Y, . measurement vector

dobs : measurement vector €

v, . process/state noise vector

> W, . measurement noise vector

e :measurement noise vector €

PPD: p(mld) <

P(Xk | Xk—l’Yk)

Xk—l = Xi1s X

Yo=Y

measurement equation



Dynamic, non-stationary system

What is a dynamic, non-stationary system?

vector of parameters  parameter evolution
we want to track model X, . state vector

: y; : measurement vector
state equation

_ V, . process noise vector
measurement equation

W, : measurement noise vector

Bayesian framework
measurement forward model

X;, Y¢,V¢, W, . random variables

Why do we care?

. position and speed of a missile, . sensor measurement

. changing ocean properties, : acoustic measurement
. stock prices

: radar clutter measurement

X
X
x: financial indicators of stock exchange,
x: atmospheric refractivity profile,

X

. visual and acoustic measurements

K K K K

: number of whales in the region,



How do we solve it and what does the solution look like?

KF/PFs offer solutions to dynamical systems, nonlinear in general, using
prediction and update as data becomes available. Tracking in time or space
offers an ideal framework for studying KF/PF.
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LaBoRaTORY A

Kalman Framework R

X, =fk_1(Xk_1,Vk) state equation

y, = hk (Xk , Wk) measurement equation

l

X; =F, X, +V, stateequation X, Yy V), W, . Gaussian

Y. = Hka + W,  measurement equation Fi, Hi: Linear

Optimal Filter = Kalman Filter 1963
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A Single Kalman Iteration

X, = F/\'—lx/\—l TV,

Y =H,x, +w, . Predict the mean X,,_, using previous history.

-
X ~ N (X, Pyp) p(x, | x,_,) %
)
X &k\k—l = E{Xk | Xk—1}= f X, P(X, | X, )dx, QI
§k|k 5o X -1
Predict the covariance Pk|k_1 using previous history.
LCPND TS GEPRTLIS &) / OXM
P [ Y6 ¥i oY) Oxk_2
o© 0®
0 3. Correct/update the mean using new data y,
-
o \ S
X, |Y
0 previous p(x, [ Y,) :(U>
states °
o) Xk = E{Xk |Yk}=ka p(x, | Y, )dx, |-_||-|
0 4. Correct/update the covariance Pklk using y,

e =>p(x, | Y, ) =p(x | Y)=p(x, [ Y,) ="

PREDICTOR-CORRECTOR DENSITY PROPAGATOR
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The Model

Consider the discrete, linear system,
xk—|—1:kak+wk7 k:071727'°'7 (1)

where
* X, € R"is the state vector at time

e M, € R™"is the state transition matrix (mapping from time
to fx. 1) or model

e {(w, e R"k=0,1,2,...} is a white, Gaussian sequence, with
w, ~ N(0,Qy), often referred to as model error

* Q, € R™"is a symmetric positive definite covariance matrix
(known as the model error covariance matrix).

4 of 32
——— |

Some of the following slides are from: Sarah Dance, University of Reading



The Observations

We also have discrete, linear observations that satisfy

Ve = HeXi +Vvi, kK=1,23,..., (2)
where
* Yy« € RP is the vector of actual measurements or observations
at time

 H, € R"™P is the observation operator. Note that this is not in
general a square matrix.

e {vp e RP;k=1,2,...} is a white, Gaussian sequence, with
v, ~ N(0, Ry), often referred to as observation error.

* Ry € RP*P is a symmetric positive definite covariance matrix
(known as the observation error covariance maitrix).

We assume that the initial state, Xo and the noise vectors at each
step, {wg}, {vk}, are assumed mutually independent.
50f 32



The Prediction and Filtering Problems

We suppose that there is some uncertainty in the initial state, i.e.,
Xo ~ N(07 PO) (3)

with Py € R™" a symmetric positive definite covariance matrix.

The problem is now to compute an improved estimate of the
stochastic variable x,, provided y, . ..y; have been measured:

Xklj = Xkly,....y;- (4)

e When j = k this is called the filtered estimate.

e When j = k — 1 this is the one-step predicted, or (here) the
predicted estimate.
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e The Kalman filter (Kalman, 1960) provides estimates for the
linear discrete prediction and filtering problem.

e We will take a minimum variance approach to deriving the filter.

* We assume that all the relevant probability densities are
Gaussian so that we can simply consider the mean and
covariance.

» Rigorous justifcation and other approaches to deriving the filter
are discussed by Jazwinski (1970), Chapter 7.
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Product of Gaussians=Gaussian:

7.0 10.0 112 130 7.0 10.96 130
One data point problem

For the general linear inverse problem we would have
1
Prior: p(m) o< exp {—=(m — mo) O (m — mo) |
. ] 1
Likelihood:  (dm) o exp {_E(d _ Gm)Tcgl(d B Gm)}

Posterior PDF
e @5 {—%[(d — em)To;Y(d — Gm) + (m — mo)TCt (m — mo)]}

. exp{_%[m ] §"[m- ﬁl]}
S'=G'C/G+C]
i=(G'C;'G+C;') (6'C;'d+C;'m,)

- m, +(G'C;'G+C,') G'C;'(d-Gm,)



Prediction step

We first derive the equation for one-step prediction of the mean
using the state propagation model (1).

Xtk = E[Xkp1]Y1,-- Vil
= E [Mka -+ Wk] ,
= MiXgx (5)
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The one step prediction of the covariance is defined by,

Piiik =E [(Xk+1 — Xpe1)k) (Xk1 — ik+1|/<)TW1,---Vk] . (6)

Exercise: Using the state propagation model, (1), and one-step
prediction of the mean, (5), show that

Pii1ik = McPyxM] + Q. (7)

10 of 32
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Filtering Step

At the time of an observation, we assume that the update to the
mean may be written as a linear combination of the observation
and the previous estimate:

Xiik = Xigk—1 + Ki(Yx — HeXpqi—1), (8)

where K, € R™P is known as the Kalman gain and will be derived
shortly.
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But first we consider the covariance associated with this estimate:
Pk =E [(Xk — X)Xk — Xik) "IV, - -Vk} : (9)
Using the observation update for the mean (8) we have,

Xk — Xk = Xk — Xph—1 — Ki(Yx — HiXgpe—1)

Xk — Xpjk—1 — Kk(HkXk + Vi — HiXg 1),

replacing the observations with their model equivalent,
= (1= KkHp)(Xk — Xip—1) — Ky V. (10)

Thus, since the error in the prior estimate, Xx — Xyx—_1 is
uncorrelated with the measurement noise we find

Pk = (11— KgHKE [(Xk — Xpk—1)(Xk — Xgj—1 )T} (1- KgHe) "
+KLE {vkv,q K[ (11)
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Simplification of the a posteriori error covariance
formula

Using this value of the Kalman gain we are in a position to simplify
the Joseph form as

Pk = (1— KikHi)Pre—1 (1 - KiHi) T + KeRiK[ = (1= KcHi )P 1.
(15)
Exercise: Show this.

Note that the covariance update equation is independent of the
actual measurements: so P¥/X could be computed in advance.
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Summary of the Kalman filter

Prediction step

Mean update: S(\k—|—1|k = Mkik|k

Covariance update: Pritik = MePycM] + Q.
Observation update step

Mean update: Xk = Xik—1 + Ki(Ye — HeXg—1)
Kalman gain: Ki = Prk_1H] (HkPyk_1H™ + Ry) ™!
Covariance update: Piik = (I = KeHg)Pyik—1.

Field
value

pp=e”

time
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orAT Nonlinear Non-Gaussian "Gy
x, =F_x,_ +v, X, = fra(X5 V)
V., =Hx, +w, Vi =h (X, W)
KF Now What?
X y

ocovarance

——{y=he) |

* h(.)linear
Gaussian x = Gaussiany

mean

* h(.) non-linear
Gaussian x = non-Gaussian y
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Extended Kalman Filter (EKF)

“AsoRATON If Nonlinear = LINEARIZE!
X, = fia (X V) X, = o (X )+ v,
Vi = (X, W,) Y =h(X,)+w,

l

X, = fiu (X)) +v =F_x _ +v,

Y =h(x)+w, =H x, +wW,

where H, = Iy
ox

!

X, =F _X._ +V,

-5

Xk Xj-1

Gaussian and Linear
Y =H X, +w, again! = now use KF




