
ECE295,	
  Data	
  Assimila0on	
  and	
  Inverse	
  Problems,	
  Spring	
  2015	
  
	
  
1	
  April,	
  Intro;	
  Linear	
  discrete	
  Inverse	
  problems	
  (Aster	
  Ch	
  1	
  and	
  2)	
  Slides	
  
8	
  April,	
  SVD	
  (Aster	
  ch	
  2	
  and	
  3)	
  Slides	
  
15	
  April,	
  RegularizaFon	
  (ch	
  4)	
  
22	
  April,	
  Sparse	
  methods	
  (ch	
  7.2-­‐7.3),	
  radar	
  
29	
  April,	
  more	
  on	
  Sparse	
  
6	
  May,	
  Bayesian	
  methods	
  and	
  Monte	
  Carlo	
  methods	
  (ch	
  11),	
  Markov	
  Chain	
  Monte	
  Carlo	
  
13	
  May,	
  IntroducFon	
  to	
  sequenFal	
  Bayesian	
  methods,	
  Kalman	
  Filter	
  (KF)	
  
20	
  May,	
  Gaussian	
  Mixture	
  Model	
  (Nima	
  )	
  
27	
  May,	
  Ensemple	
  Kalman	
  Filer	
  (EnKF)	
  
3	
  June,	
  EnKF,	
  ParFcle	
  Filter,	
  	
  
	
  
Homework:	
  	
  
Just	
  email	
  the	
  code	
  to	
  me	
  (I	
  dont	
  need	
  anything	
  else).	
  	
  
Call	
  the	
  files	
  LastName_ExXX.	
  	
  
Homework	
  is	
  due	
  8am	
  on	
  Wednesday.	
  	
  
8	
  April:	
  Hw	
  1:	
  Download	
  the	
  matlab	
  codes	
  for	
  the	
  book	
  (cd_5.3)	
  from	
  this	
  website	
  	
  
15	
  April:	
  SVD	
  analysis:	
  
SVD	
  homework.	
  You	
  can	
  also	
  try	
  replacing	
  the	
  matrix	
  in	
  the	
  Shaw	
  problem	
  with	
  the	
  beamforming	
  sensing	
  matrix.	
  The	
  
sensing	
  matrix	
  is	
  available	
  here	
  .	
  
22	
  April	
  
Late	
  April:	
  Beamforming	
  
May:	
  Ice-­‐flow	
  from	
  GPS	
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Generating samples from an arbitrary posterior PDF

The rejection method 
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Generating samples from the posterior PDF

Rejection method 

Step 1: generate a uniform random variable, xi between a and b

p(xi) =
1

(bc a)
, a w xi w b

Step 2: generate a second uniform random variable, yi

p(yi) =
1

pmax
, 0 w yi w pmax

Step 3: accept xi if otherwise rejectyi w p(xi|d)

Step 4: go to step 1

But this requires 
us to know Pmax
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Monte Carlo integration

Consider any integral of the form

I =
Z

M
f(m)p(m|d)dm

I |
NsX

i=1

f(mi)p(mi|d)
h(mi)

Given a set of samples mi (i=,...,Ns) with sampling density h(mi), the
Monte Carlo approximation to I is given by

If the sampling density is proportional to p(mi | d) then,

h(m) = Ns × p(m|d)

� I | 1

Ns

NsX

i=1

f(mi)

The variance of the f(mi) values gives the numerical integration error in I

Only need to know 
p(m | d) to a 

multiplicative constant
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Example: Monte Carlo integration

h(m) =
Ns

A

I =
Z

A
f(m)dm

f(m) =

(
1 m inside circle
0 otherwise

Finding the area of a circle by throwing darts

I |
1

Ns

NSX

i=1

f(mi)

| Number of points inside the circle

Total number of points
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Monte Carlo integration

We have

I =
Z

M
f(m)p(m|d)dm |

NsX

i=1

f(mi)p(mi|d)
h(mi)

|
1

Ns

NsX

i=1

f(mi)

The variance in this estimate is given by

~2I =
1

Ns

�
!�

!�
1

N2s

NsX

i=1

f2(mi)c

�

# 1

Ns

NsX

i=1

f(mi)

�

$
2
�
! 

!�

In principal any sampling density h(m) can be used but the convergence rate 
will be fastest when h(m) � p(m | d).

As the number of samples, Ns, grows the error in the numerical estimate 
will decrease with the square root of Ns.  

What useful integrals should one calculate using samples 
distributed according to the posterior p(m | d )?

To carry out MC integration of the posterior we ONLY NEED to be able to 
evaluate the integrand up to a multiplicative constant.



The	
  volume	
  of	
  a	
  N-­‐dim	
  cube	
  
2^N	
  
	
  
For	
  N=2	
  
3.14/2^2=3/4	
  
	
  
For	
  N=10	
  
3.14^5/120/2^10=2/1000	
  
	
  
This	
  will	
  be	
  hard!	
  



Probabilistic inference 

Bayes theorem and all that....



Books
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Highly nonlinear inverse problems

Multi-modal data misfit/objective function

What value is there in an optimal model ?
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Probabilistic inference: History

Pr(x : a w x w b) =
Z b

a
p(x)dx

We have already met the concept of using a probability density function p(x) to 
describe the state of a random variable.

In the probabilistic (or Bayesian) approach, probabilities are also used to describe 
inferences (or degrees of belief) about x even if x itself is not a random variable.

Mass of Saturn (Laplace 1812)
p
(M

|d
a
ta
,I
)

Laplace (1812) rediscovered the work of Bayes (1763), and used it to 
constrain the mass of Saturn. In 150 years the estimate changed 
by only 0.63% !

But Laplace died in 1827 and then the arguments started...

Z �

c�
p(x)dx= 1
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Bayesian or Frequentist: the arguments

Mass of Saturn

Some thought that using probabilities to describe degrees of belief was 
too subjective and so they redefined probability as the long run relative 
frequency of a random event. This became the Frequentist approach.

To estimate the mass of Saturn the frequentist has to relate the mass to 
the data through a statistic. Since the data contain `random’ noise 
probability theory can be applied to the statistic (which becomes the 
random variable !). This gave birth to the field of statistics !

But how to choose the statistic ? 

`.. a plethora of tests and procedures without any clear underlying rationale’
(D. S. Sivia) 

`Bayesian is subjective and 
requires too many guesses’

A. Frequentist

`Frequentist is subjective, but BI can 
solve problems more completely’

A. Bayesian 

For a discussion see Sivia (2005, pp 8-11).

Data Analysis: A Bayesian Tutorial’ 2nd Ed. D. S. Sivia with J. Skilling, O.U.P. (2005)
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Probability theory: Joint probability density functions

Joint PDF of x and y

p(x, y)

p(x, y) = p(x)× p(y)

If x and y are independent their joint PDF is separable

p(x)

A PDF for variable x 

Probability is proportional to 
area under the curve or surface
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p(y|x)

Probability theory: Conditional probability density 
functions

Joint PDF of x and y

p(x|y)p(x, y)

Conditional PDFs

p(x, y) = p(x|y)× p(y)
Relationship between joint and conditional PDFs

“The PDF of x given a value for y”“The PDF of x and y taken together”
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Probability theory: Marginal probability density functions

Marginal PDFs

p(x, y) = p(x|y)× p(y)
Relationship between joint, conditional and marginal PDFs

p(y) =
Z
p(x, y)dx

p(x) =
Z
p(x, y)dy

A marginal PDF is a 
summation of probabilities
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Prior probability density functions

What we know from previous experiments, or what we guess...

Beware: there is no such thing as a non-informative prior

p(x) = k exp

(

c
(xc xo)2

2~2

)

p(m) = k exp

½
c
1

2
(mcmo)

TCc1m (mcmo)

¾

p(x)dx= p(y)dy

p(x) = C

p(y) = p(x)
dx

dy

p(x2) =
C

2x

Beware: there is no such thing as a non-informative prior

As A � � this is not proper !
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Likelihood functions

The likelihood that the data would have occurred for a given model

Maximizing likelihoods is what Frequentists do. It is what we did earlier.

p(di|x) = exp

(

c
(xc xo,i)2

2~2i

)

p(d|m) = exp

½
c1
2
(dcGm)TCc1D (dcGm)

¾

max
m

p(d|m) = min
m

c ln(p(d|m))

= min
m

(dcGm)TCc1D (dcGm)

Maximizing the likelihood = minimizing the data prediction error
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Bayes’ theorem 

p(m|d, I) � p(d|m, I)× p(m|I)

Conditional PDFs
Bayes’ rule (1763)

Posterior probability density � Likelihood  x Prior probability density

All information is expressed in terms of probability density functions 

1702-1761

What is known before 
the data are collected

Measuring fit 
to data

What is known after 
the data are collected

Assumptions

model parametersdata
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Example: Measuring the mass of an object 

If we have an object whose mass, m,  we which to determine. Before we collect 
any data we believe that its mass is approximately 10.0 ± 1Pg. In probabilistic 
terms we could represent this as a Gaussian prior distribution

p(m|d) � e
c12(mc10.96)

2

1/5

p(m) =
1S
2|
ec

1
2(mc10.0)

2

Suppose a measurement is taken and a value 11.2 P g is obtained, and the 
measuring device is believed to give Gaussian errors with mean 0 and V = 0.5 P g.
Then the likelihood function can be written

p(d|m) =
1

0.5
S
2|
ec2(mc11.2)

2

The posterior PDF becomes a Gaussian centred at the value of 10.96 P g with 
standard deviation V= (1/5)1/2 ~ 0.45. 

p(m|d) =
1

|
ec

1
2(mc10.0)

2c2(mc11.2)2

prior

Likelihood

Posterior
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Example: Measuring the mass of an object 

p(d|m) � exp
½
c1
2
(dcGm)TCc1d (dcGm)

¾

� exp
½
c1
2
[(dcGm)TCc1d (dcGm) + (mcmo)

TCc1m (mcmo)]

¾

The more accurate new data has changed the estimate of m and 
decreased its uncertainty  

For the general linear inverse problem we would have

p(m) � exp
½
c
1

2
(mcmo)

TCc1m (mcmo)

¾
Prior:

Likelihood:

Posterior PDF

One data point problem 



Product	
  of	
  Gaussians=Gaussian:	
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Example: Measuring the mass of an object 

p(d|m) � exp
½
c1
2
(dcGm)TCc1d (dcGm)

¾

� exp
½
c1
2
[(dcGm)TCc1d (dcGm) + (mcmo)

TCc1m (mcmo)]

¾

The more accurate new data has changed the estimate of m and 
decreased its uncertainty  

For the general linear inverse problem we would have

p(m) � exp
½
c
1

2
(mcmo)

TCc1m (mcmo)

¾
Prior:

Likelihood:

Posterior PDF

One data point problem 

∝ exp −
1
2
m− m̂[ ]T S−1 m− m̂[ ]

#
$
%

&
'
(

S−1 =GTCd
−1G+Cm

−1

m̂ = GTCd
−1G+Cm

−1( )
−1
GTCd

−1d+Cm
−1m0( )

= m0 + G
TCd

−1G+Cm
−1( )

−1
GTCd

−1 d−Gm0( )
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The biased coin problem

Suppose we have a suspicious coin and we want to know 
if it is biased or not ?

Let D be the probability that we get a head. 

D = 1 : means we always get a head.
D = 0 : means we always get a tail.
D = 0.5 : means equal likelihood of head or tail.

We can collect data by tossing the coin many times 

We seek a probability density function for D given the data

p(n|d, I) � p(d|n, I)× p(n|I)

Posterior PDF � Likelihood x Prior PDF

{H,T, T,H, . . .}
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The biased coin problem

p(n|d, I) � p(d|n, I)× p(n|I)
Posterior PDF � Likelihood  x Prior PDF

What is the prior PDF for D ?

Let us assume that it is uniform 

p(n|I) = 1, 0 w n w 1

What is the Likelihood function ?

p(d|n, I) � nR(1c n)NcR

The probability of observing R heads out of N coin tosses is
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The biased coin problem
We have the posterior PDF for D given the data and our prior PDF

p(n|d, I) � nR(1c n)NcR

After N coin tosses let R = number of heads observed. Then we  
Can plot the probability density for p(D | d) as data are collected

Number 

of data
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The biased coin problem

p(n|d, I) � nR(1c n)NcR

Number 

of data
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The biased coin problem

But what if three people had different opinions about the coin 
prior to collecting the data ?

Dr. Blue knows nothing about the coin.

p(d|n, I) � nR(1c n)NcR

Dr. Red thinks the coin is either highly biased to heads or tails. 

Dr. Green thinks the coin is likely to be almost fair. 
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The biased coin problem

Number 

of data


