### ECE295, Data Assimilation and Inverse Problems, Spring 2015

1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) <u>Slides</u>
8 April, SVD (Aster ch 2 and 3) <u>Slides</u>
15 April, Regularization (ch 4)
22 April, Sparse methods (ch 7.2-7.3), radar
29 April, more on Sparse
6 May, Bayesian methods and Monte Carlo methods (ch 11), Markov Chain Monte Carlo
13 May, Introduction to sequential Bayesian methods, Kalman Filter (KF)
20 May, Gaussian Mixture Model (Nima )
27 May, Ensemple Kalman Filer (EnKF)
3 June, EnKF, Particle Filter,

Homework:

Just email the code to me (I dont need anything else).

Call the files LastName\_ExXX.

Homework is due 8am on Wednesday.

8 April: Hw 1: Download the matlab codes for the book (cd\_5.3) from this website

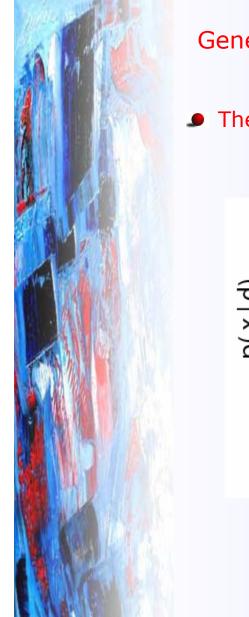
15 April: SVD analysis:

SVD homework. You can also try replacing the matrix in the Shaw problem with the beamforming sensing matrix. The sensing matrix is available here .

22 April

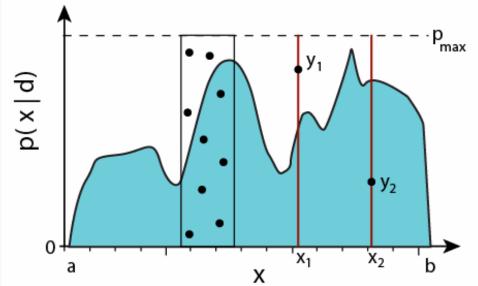
Late April: Beamforming

May: Ice-flow from GPS



Generating samples from an arbitrary posterior PDF

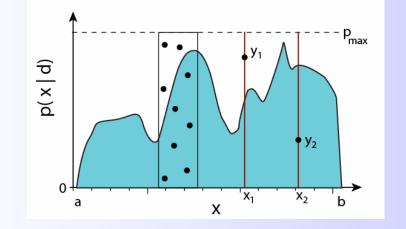
The rejection method





### Generating samples from the posterior PDF

Rejection method



But this requires us to know  $P_{max}$ 

Step 1: generate a uniform random variable,  $x_i$  between a and b

$$p(x_i) = \frac{1}{(b-a)}, \quad a \le x_i \le b$$

Step 2: generate a second uniform random variable, y<sub>i</sub>

$$p(y_i) = rac{1}{p_{max}}, \quad 0 \le y_i \le p_{max}$$

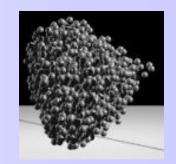
Step 3: accept x<sub>i</sub> if  $y_i \leq p(x_i|d)$  otherwise reject

Step 4: go to step 1

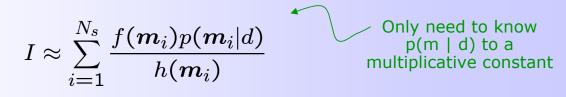
#### Monte Carlo integration

Consider any integral of the form

$$I = \int_{\mathcal{M}} f(\boldsymbol{m}) p(\boldsymbol{m}|d) d\boldsymbol{m}$$



Given a set of samples  $m_i$  (i=,..., $N_s$ ) with sampling density  $h(m_i)$ , the Monte Carlo approximation to I is given by



If the sampling density is proportional to  $p(m_i | d)$  then,

$$h(\boldsymbol{m}) = N_s \times p(\boldsymbol{m}|\boldsymbol{d})$$

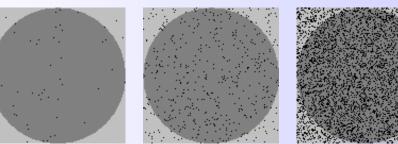
$$\Rightarrow I \approx \frac{1}{N_s} \sum_{i=1}^{N_s} f(\boldsymbol{m}_i)$$

The variance of the  $f(m_i)$  values gives the numerical integration error in I



Finding the area of a circle by throwing darts

$$I = \int_A f(\boldsymbol{m}) d\boldsymbol{m}$$



 $f(\boldsymbol{m}) = \begin{cases} 1 & \boldsymbol{m} \text{ inside circle} \\ 0 & \text{otherwise} \end{cases}$  $h(\boldsymbol{m}) = \frac{N_s}{A}$ 

$$I \approx \frac{1}{N_s} \sum_{i=1}^{N_s} f(\boldsymbol{m}_i)$$

 $\approx$  Number of points inside the circle

Total number of points

#### Monte Carlo integration

We have

$$I = \int_{\mathcal{M}} f(\boldsymbol{m}) p(\boldsymbol{m}|d) d\boldsymbol{m} \approx \sum_{i=1}^{N_s} \frac{f(\boldsymbol{m}_i) p(\boldsymbol{m}_i|d)}{h(\boldsymbol{m}_i)} \approx \frac{1}{N_s} \sum_{i=1}^{N_s} f(\boldsymbol{m}_i)$$

The variance in this estimate is given by

$$\sigma_I^2 = rac{1}{N_s} \left\{ rac{1}{N_s^2} \sum_{i=1}^{N_s} f^2(\boldsymbol{m}_i) - \left( rac{1}{N_s} \sum_{i=1}^{N_s} f(\boldsymbol{m}_i) 
ight)^2 
ight\}$$

- To carry out MC integration of the posterior we ONLY NEED to be able to evaluate the integrand up to a multiplicative constant.
- As the number of samples, N<sub>s</sub>, grows the error in the numerical estimate will decrease with the square root of N<sub>s</sub>.
  - In principal any sampling density h(m) can be used but the convergence rate will be fastest when  $h(m) \propto p(m \mid d)$ .

What useful integrals should one calculate using samples distributed according to the posterior p(m | d)?

In low dimensions, these volume and radius formulas simplify to the following:

| Dimension | Volume of a ball of radius <i>R</i> | Radius of a ball of volume V              |
|-----------|-------------------------------------|-------------------------------------------|
| 0         | 1                                   | All balls have volume 1                   |
| 1         | 2R                                  | V/2                                       |
| 2         | $\pi R^2$                           | $\frac{V^{1/2}}{\sqrt{\pi}}$              |
| 3         | $\frac{4}{3}\pi R^3$                | $\left(\frac{3V}{4\pi}\right)^{1/3}$      |
| 4         | $\frac{\pi^2}{2}R^4$                | $\frac{(2V)^{1/4}}{\sqrt{\pi}}$           |
| 5         | $\frac{8\pi^2}{15}R^5$              | $\left(\frac{15V}{8\pi^2}\right)^{1/5}$   |
|           | $\frac{\pi^3}{6}R^6$                | $\frac{(6V)^{1/6}}{\sqrt{\pi}}$           |
|           |                                     | $\left(\frac{105V}{16\pi^3}\right)^{1/7}$ |
|           | $\frac{\pi^4}{24}R^8$               | $\frac{(24V)^{1/8}}{\sqrt{\pi}}$          |
| 9         | $\frac{32\pi^4}{945}R^9$            | $\left(\frac{945V}{32\pi^4}\right)^{1/9}$ |
| 10        | $\frac{\pi^5}{120}R^{10}$           | $\frac{(120V)^{1/10}}{\sqrt{\pi}}$        |

The volume of a N-dim cube 2^N

For N=2 3.14/2^2=3/4

For N=10 3.14^5/120/2^10=2/1000

This will be hard!

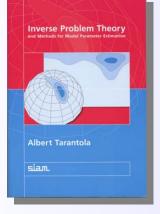


# **Probabilistic inference**

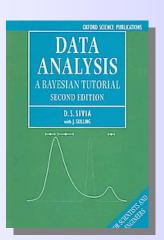
Bayes theorem and all that....

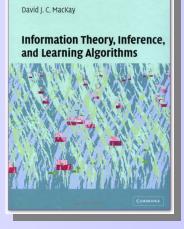


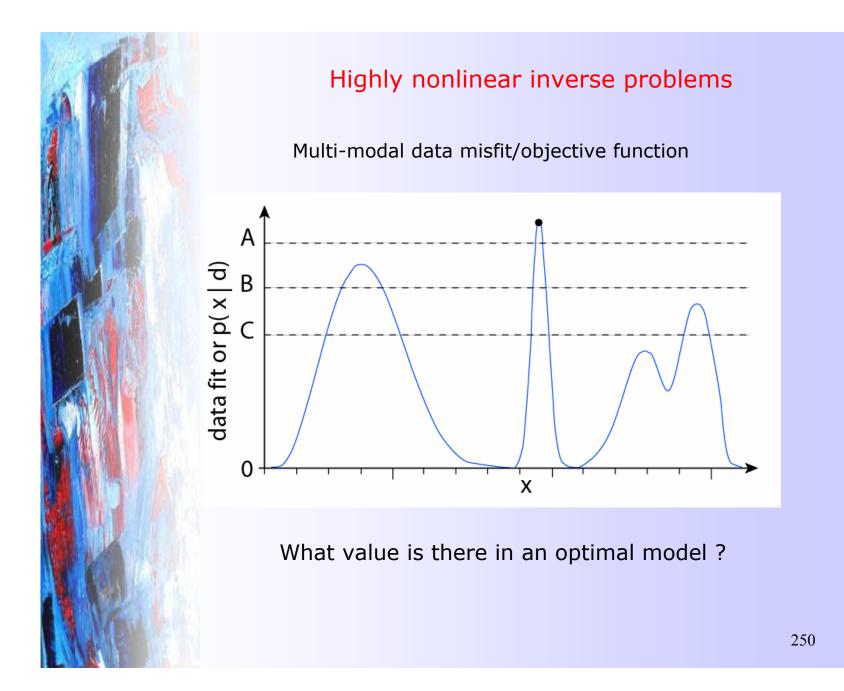




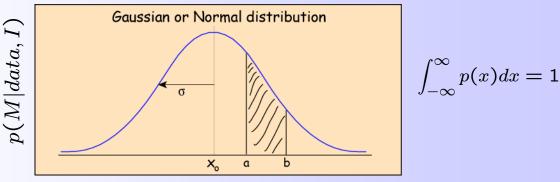
# Books











Mass of Saturn

(Laplace 1812)

$$\Pr(x:a\leq x\leq b)=\int_a^b p(x)dx$$

We have already met the concept of using a probability density function p(x) to

describe the state of a random variable.

In the probabilistic (or *Bayesian*) approach, probabilities are also used to describe *inferences* (or *degrees of belief*) about x even if x itself is not a random variable.



Laplace (1812) rediscovered the work of Bayes (1763), and used it to constrain the mass of Saturn. In 150 years the estimate changed by only 0.63% !

But Laplace died in 1827 and then the arguments started...



### Bayesian or Frequentist: the arguments





Some thought that using probabilities to describe degrees of belief was too subjective and so they redefined probability as the *long run relative frequency* of a random event. This became the *Frequentist* approach.

To estimate the mass of Saturn the frequentist has to relate the mass to the data through a *statistic*. Since the data contain `random' noise probability theory can be applied to the statistic (which becomes the random variable !). This gave birth to the field of statistics !

#### But how to choose the statistic ?

.. a plethora of tests and procedures without any clear underlying rationale'

(D. S. Sivia)

*`Bayesian is subjective and requires too many guesses' A. Frequentist*  *`Frequentist is subjective, but BI can solve problems more completely' A. Bayesian* 

For a discussion see Sivia (2005, pp 8-11).

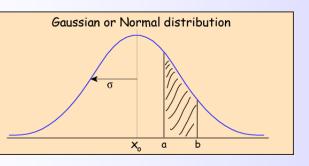
Data Analysis: A Bayesian Tutorial' 2<sup>nd</sup> Ed. D. S. Sivia with J. Skilling, O.U.P. (2005)



### Probability theory: Joint probability density functions

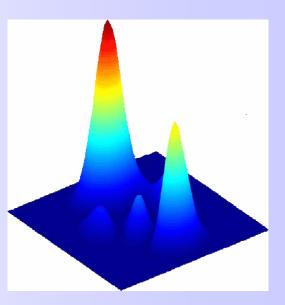
A PDF for variable x

p(x)



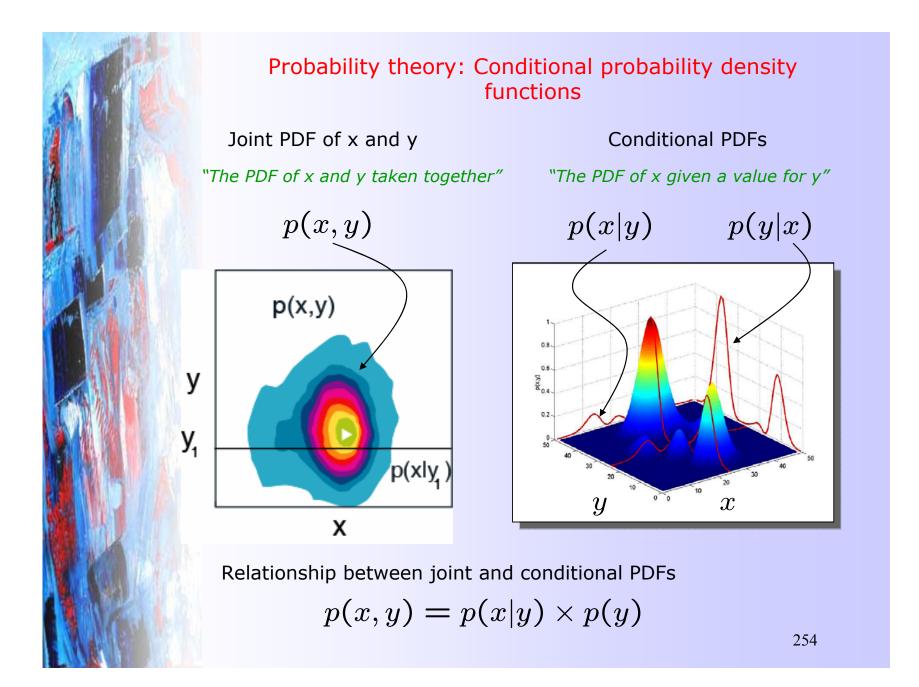
Probability is proportional to area under the curve or surface

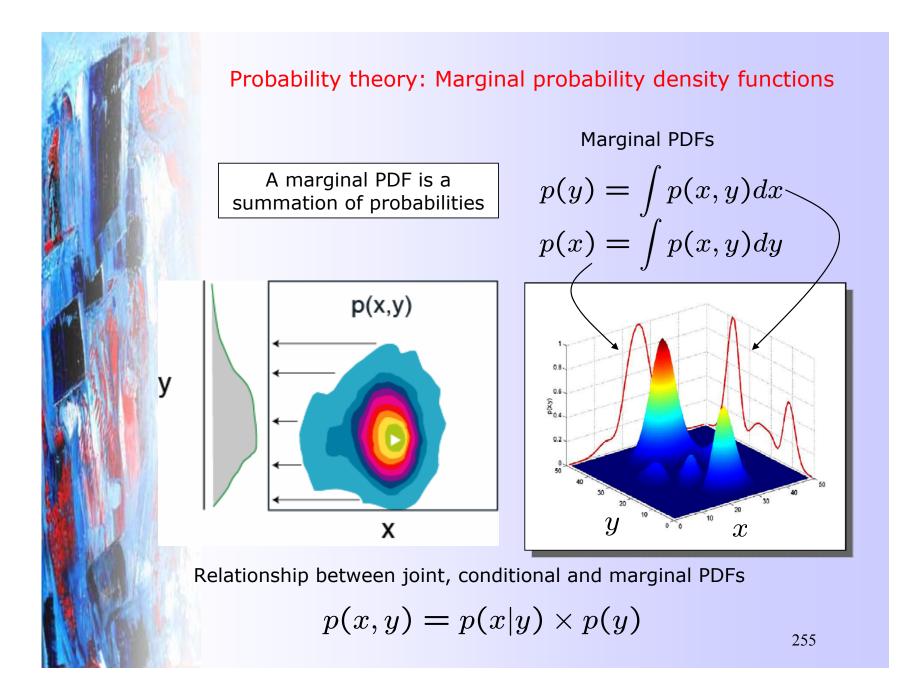
Joint PDF of x and y p(x,y)

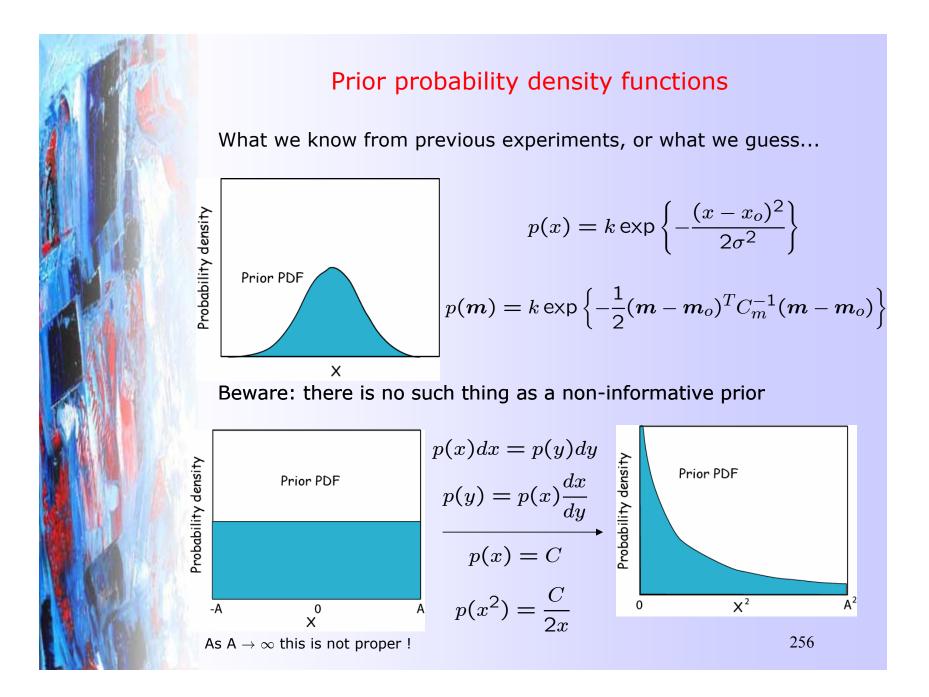


If x and y are independent their joint PDF is separable

$$p(x,y) = p(x) \times p(y)$$

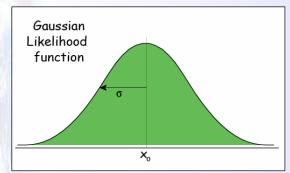






#### Likelihood functions

The likelihood that the data would have occurred for a given model

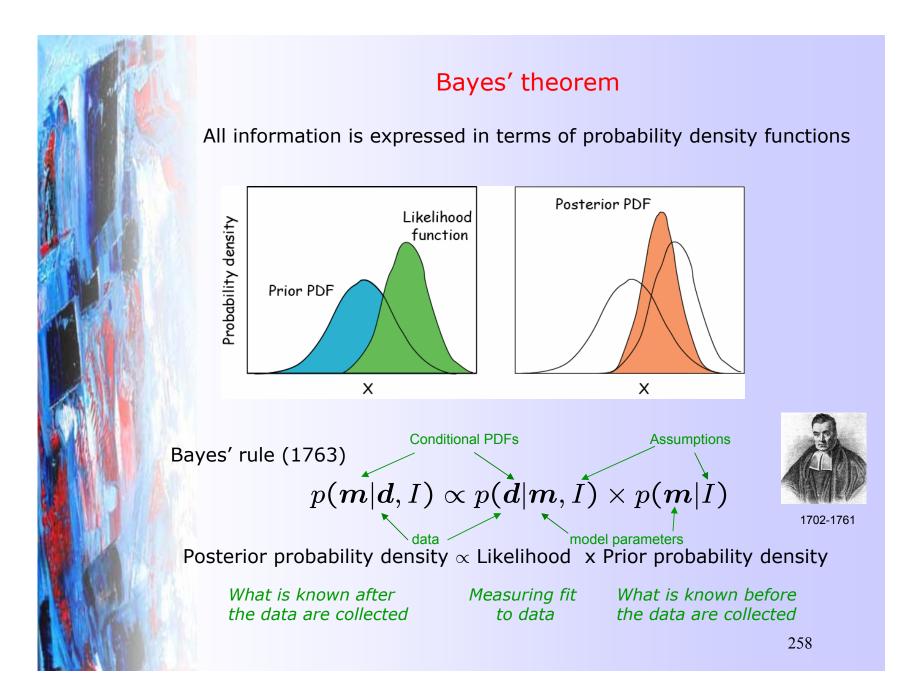


$$p(d_i|x) = \exp\left\{-\frac{(x - x_{o,i})^2}{2\sigma_i^2}\right\}$$
$$p(d|m) = \exp\left\{-\frac{1}{2}(d - Gm)^T C_D^{-1}(d - Gm)\right\}$$

Maximizing likelihoods is what Frequentists do. It is what we did earlier.

$$\max_{\boldsymbol{m}} p(\boldsymbol{d}|\boldsymbol{m}) = \min_{\boldsymbol{m}} - \ln(p(\boldsymbol{d}|\boldsymbol{m}))$$
$$= \min_{\boldsymbol{m}} (\boldsymbol{d} - \boldsymbol{G}\boldsymbol{m})^T \boldsymbol{C}_D^{-1} (\boldsymbol{d} - \boldsymbol{G}\boldsymbol{m})$$

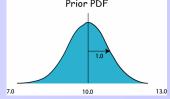
Maximizing the likelihood = minimizing the data prediction error



#### Example: Measuring the mass of an object

If we have an object whose mass, *m*, we which to determine. Before we collect any data we believe that its mass is approximately  $10.0 \pm 1\mu g$ . In probabilistic terms we could represent this as a Gaussian prior distribution Prior PDF

prior 
$$p(m) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(m-10.0)^2}$$



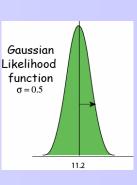
Suppose a measurement is taken and a value  $11.2 \mu$  g is obtained, and the measuring device is believed to give Gaussian errors with mean 0 and  $\sigma = 0.5 \mu$  g. Then the likelihood function can be written

$$p(d|m) = \frac{1}{0.5\sqrt{2\pi}} e^{-2(m-11.2)^2}$$
 Likelihood

$$p(m|d) = \frac{1}{\pi} e^{-\frac{1}{2}(m-10.0)^2 - 2(m-11.2)^2} \text{Posterior}$$

$$n(m|d) \propto e^{-\frac{1}{2}(m-10.96)^2}$$

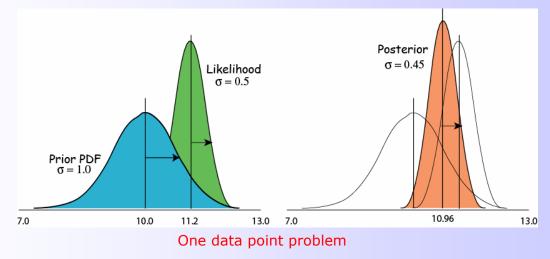
 $p(m|d) \propto e$ 



The posterior PDF becomes a Gaussian centred at the value of 10.96  $\mu$  g with standard deviation  $\sigma = (1/5)^{1/2} \approx 0.45$ . 259

#### Example: Measuring the mass of an object

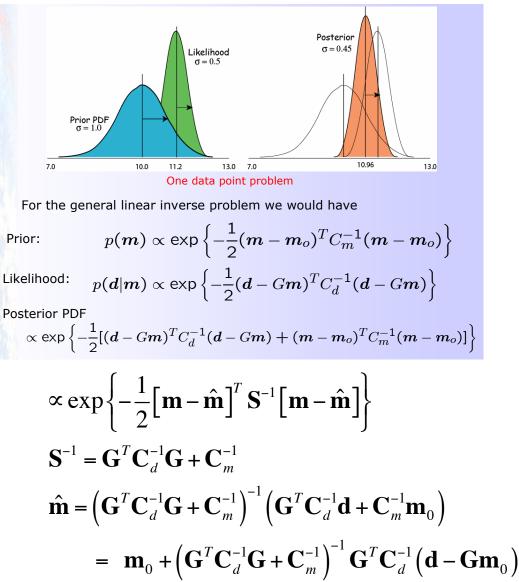
The more accurate new data has changed the estimate of *m* and decreased its uncertainty



For the general linear inverse problem we would have

Prior: 
$$p(\boldsymbol{m}) \propto \exp\left\{-\frac{1}{2}(\boldsymbol{m}-\boldsymbol{m}_{o})^{T}C_{m}^{-1}(\boldsymbol{m}-\boldsymbol{m}_{o})\right\}$$
  
Likelihood:  $p(\boldsymbol{d}|\boldsymbol{m}) \propto \exp\left\{-\frac{1}{2}(\boldsymbol{d}-\boldsymbol{G}\boldsymbol{m})^{T}C_{d}^{-1}(\boldsymbol{d}-\boldsymbol{G}\boldsymbol{m})\right\}$   
Posterior PDF  
 $\propto \exp\left\{-\frac{1}{2}[(\boldsymbol{d}-\boldsymbol{G}\boldsymbol{m})^{T}C_{d}^{-1}(\boldsymbol{d}-\boldsymbol{G}\boldsymbol{m})+(\boldsymbol{m}-\boldsymbol{m}_{o})^{T}C_{m}^{-1}(\boldsymbol{m}-\boldsymbol{m}_{o})]\right\}$   
26

## Product of Gaussians=Gaussian:





Suppose we have a suspicious coin and we want to know if it is biased or not ?

Let  $\alpha$  be the probability that we get a head.

 $\alpha = 1$  : means we always get a head.  $\alpha = 0$  : means we always get a tail.  $\alpha = 0.5$  : means equal likelihood of head or tail.

We can collect data by tossing the coin many times

 $\{H, T, T, H, \ldots\}$ 



 $0 \le \alpha \le 1$ 

We seek a probability density function for  $\alpha$  given the data

 $p(\alpha|\boldsymbol{d},I) \propto p(\boldsymbol{d}|lpha,I) imes p(lpha|I)$ 

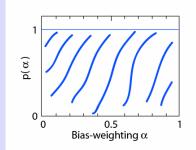
Posterior PDF  $\propto$  Likelihood x Prior PDF



What is the prior PDF for  $\alpha$  ?

Let us assume that it is uniform

$$p(\alpha|I) = 1, \quad 0 \le \alpha \le 1$$



What is the Likelihood function ?

The probability of observing R heads out of N coin tosses is

$$p(\boldsymbol{d}|lpha,I) \propto lpha^R (1-lpha)^{N-R}$$



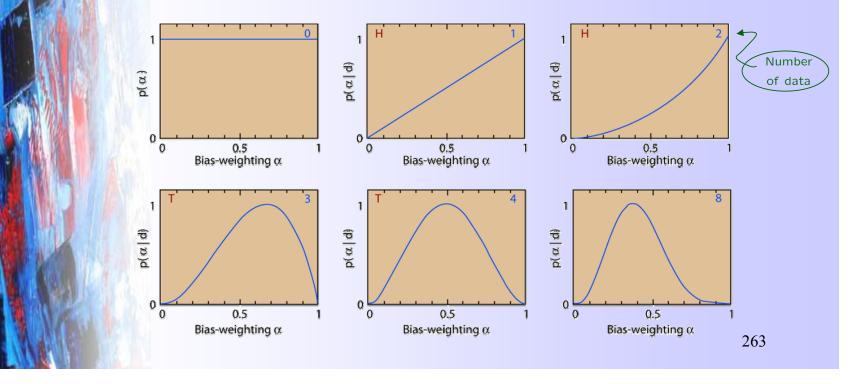
 $p(\alpha|\boldsymbol{d},I) \propto p(\boldsymbol{d}|lpha,I) imes p(lpha|I)$ 

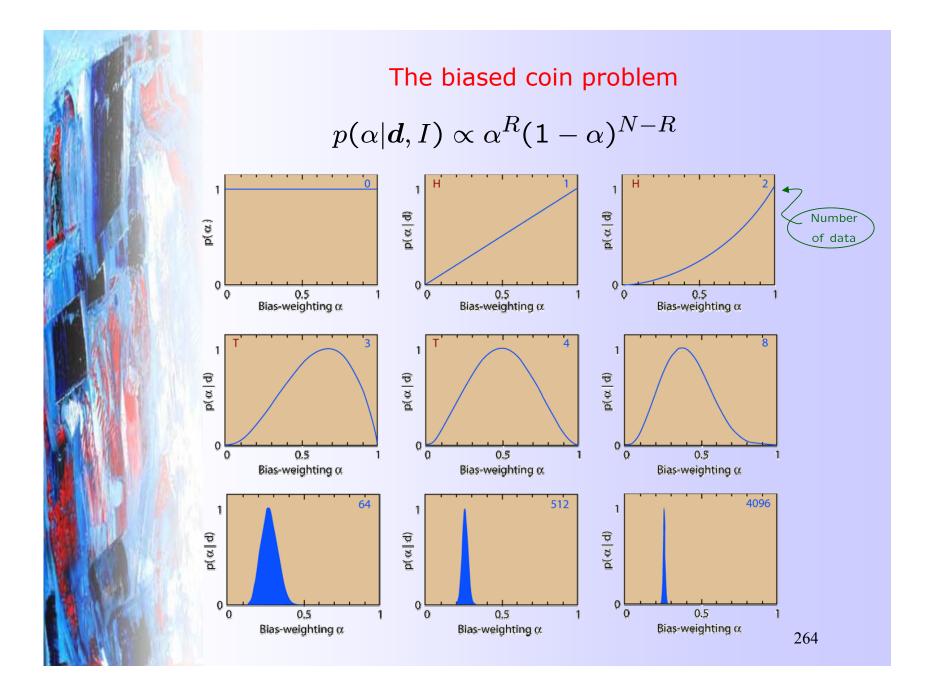
Posterior PDF  $\propto$  Likelihood x Prior PDF

We have the posterior PDF for  $\alpha$  given the data and our prior PDF

$$p(lpha|m{d},I) \propto lpha^R (1-lpha)^{N-R}$$

After N coin tosses let R = number of heads observed. Then we Can plot the probability density for  $p(\alpha \mid d)$  as data are collected







But what if three people had different opinions about the coin prior to collecting the data ?

Dr. Blue knows nothing about the coin.

Dr. Green thinks the coin is likely to be almost fair.

Dr. Red thinks the coin is either highly biased to heads or tails.

