
ECE295,	
  Data	
  Assimila0on	
  and	
  Inverse	
  Problems,	
  Spring	
  2014	
  
•  Classes	
  
2	
  April,	
  Intro;	
  Linear	
  discrete	
  Inverse	
  problems	
  (Aster	
  Ch	
  1)	
  Slides	
  
9	
  April,	
  SVD	
  (Aster	
  ch	
  2	
  and	
  3)	
  Slides	
  
16	
  April,	
  RegularizaFon	
  (ch	
  4)	
  Slides	
  
23	
  April,	
  Sparse	
  methods	
  (ch	
  7.2-­‐7.3)	
  Slides	
  
30	
  April,	
  Bayesian	
  methods	
  (ch	
  11)	
  
7	
  May,	
  Markov	
  Chain	
  Monte	
  Carlo	
  (download	
  from	
  Mark	
  Steyvers	
  )	
  
14	
  May,	
  (Caglar	
  Yardim)	
  IntroducFon	
  to	
  sequenFal	
  Bayesian	
  methods	
  
21	
  May,	
  Kalman	
  
28	
  May,	
  EKF,UKF,EnKF	
  
4	
  June,	
  PF	
  
	
  
Homework:	
  You	
  can	
  use	
  any	
  programming	
  language,	
  matlab	
  is	
  the	
  most	
  obvious,	
  some	
  MathemaFca	
  or	
  Python	
  could	
  be	
  
fun!	
  	
  
Hw	
  1:	
  Download	
  the	
  matlab	
  codes	
  for	
  the	
  book	
  (cd_5.3)	
  from	
  this	
  website	
  
h`p://www.ees.nmt.edu/outside/courses/GEOP529_book.html.	
  Run	
  the	
  3	
  examples	
  for	
  chapter	
  2.	
  Come	
  to	
  class	
  with	
  
one	
  quesFon	
  about	
  the	
  examples.	
  Due	
  9	
  April.	
  
hw	
  2,	
  16	
  April,	
  SVD	
  ;	
  read	
  chapter	
  one	
  of	
  Steyvers	
  notes,	
  
hw3,	
  23	
  April,	
  RegularizaFon	
  
hw4,	
  30	
  April,	
  Sparse	
  problems	
  
hw5,	
  7	
  May,	
  Monte	
  Carlo	
  integraFon	
  
hw6,	
  14	
  May,	
  Metropolis	
  algorithm	
  (Steyvers	
  Ch	
  2.4.1-­‐2.4.5);	
  Metropolis-­‐HasFngs	
  algorithm,	
  (Steyvers	
  Ch	
  2.6.1-­‐2.6.3).	
  





Example	
  7.4	
  





L2	
  soluFons	
  



Problem	
  7.4	
  

d1000 x1 =W1000 x1000m1000 x1 + n1000 x1
q100 x1 =G100 x1000d1000 x1 = G100 x1000W1000 x1000m1000 x1 + n '1000 x1



L1	
  soluFons	
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Generating samples from an arbitrary posterior PDF

The rejection method 
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Generating samples from the posterior PDF

Rejection method 

Step 1: generate a uniform random variable, xi between a and b

p(xi) =
1

(bc a)
, a w xi w b

Step 2: generate a second uniform random variable, yi

p(yi) =
1

pmax
, 0 w yi w pmax

Step 3: accept xi if otherwise rejectyi w p(xi|d)

Step 4: go to step 1

But this requires 
us to know Pmax
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Monte Carlo integration

Consider any integral of the form

I =
Z

M
f(m)p(m|d)dm

I |
NsX

i=1

f(mi)p(mi|d)
h(mi)

Given a set of samples mi (i=,...,Ns) with sampling density h(mi), the
Monte Carlo approximation to I is given by

If the sampling density is proportional to p(mi | d) then,

h(m) = Ns × p(m|d)

� I | 1

Ns

NsX

i=1

f(mi)

The variance of the f(mi) values gives the numerical integration error in I

Only need to know 
p(m | d) to a 

multiplicative constant
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Example: Monte Carlo integration

h(m) =
Ns

A

I =
Z

A
f(m)dm

f(m) =

(
1 m inside circle
0 otherwise

Finding the area of a circle by throwing darts

I |
1

Ns

NSX

i=1

f(mi)

| Number of points inside the circle

Total number of points
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Monte Carlo integration

We have

I =
Z

M
f(m)p(m|d)dm |

NsX

i=1

f(mi)p(mi|d)
h(mi)

|
1

Ns

NsX

i=1

f(mi)

The variance in this estimate is given by

~2I =
1

Ns

�
!�

!�
1

N2s

NsX

i=1

f2(mi)c

�

# 1

Ns

NsX

i=1

f(mi)

�

$
2
�
! 

!�

In principal any sampling density h(m) can be used but the convergence rate 
will be fastest when h(m) � p(m | d).

As the number of samples, Ns, grows the error in the numerical estimate 
will decrease with the square root of Ns.  

What useful integrals should one calculate using samples 
distributed according to the posterior p(m | d )?

To carry out MC integration of the posterior we ONLY NEED to be able to 
evaluate the integrand up to a multiplicative constant.



The	
  volume	
  of	
  a	
  N-­‐dim	
  cube	
  
2^N	
  
	
  
For	
  N=2	
  
3.14/2^2=3/4	
  
	
  
For	
  N=10	
  
3.14^5/120/2^10=2/1000	
  
	
  
This	
  will	
  be	
  hard!	
  



Probabilistic inference 

Bayes theorem and all that....



Books
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Highly nonlinear inverse problems

Multi-modal data misfit/objective function

What value is there in an optimal model ?
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Probabilistic inference: History

Pr(x : a w x w b) =
Z b

a
p(x)dx

We have already met the concept of using a probability density function p(x) to 
describe the state of a random variable.

In the probabilistic (or Bayesian) approach, probabilities are also used to describe 
inferences (or degrees of belief) about x even if x itself is not a random variable.

Mass of Saturn (Laplace 1812)
p
(M

|d
a
ta
,I
)

Laplace (1812) rediscovered the work of Bayes (1763), and used it to 
constrain the mass of Saturn. In 150 years the estimate changed 
by only 0.63% !

But Laplace died in 1827 and then the arguments started...

Z �

c�
p(x)dx= 1
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Bayesian or Frequentist: the arguments

Mass of Saturn

Some thought that using probabilities to describe degrees of belief was 
too subjective and so they redefined probability as the long run relative 
frequency of a random event. This became the Frequentist approach.

To estimate the mass of Saturn the frequentist has to relate the mass to 
the data through a statistic. Since the data contain `random’ noise 
probability theory can be applied to the statistic (which becomes the 
random variable !). This gave birth to the field of statistics !

But how to choose the statistic ? 

`.. a plethora of tests and procedures without any clear underlying rationale’
(D. S. Sivia) 

`Bayesian is subjective and 
requires too many guesses’

A. Frequentist

`Frequentist is subjective, but BI can 
solve problems more completely’

A. Bayesian 

For a discussion see Sivia (2005, pp 8-11).

Data Analysis: A Bayesian Tutorial’ 2nd Ed. D. S. Sivia with J. Skilling, O.U.P. (2005)
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Probability theory: Joint probability density functions

Joint PDF of x and y

p(x, y)

p(x, y) = p(x)× p(y)

If x and y are independent their joint PDF is separable

p(x)

A PDF for variable x 

Probability is proportional to 
area under the curve or surface
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p(y|x)

Probability theory: Conditional probability density 
functions

Joint PDF of x and y

p(x|y)p(x, y)

Conditional PDFs

p(x, y) = p(x|y)× p(y)
Relationship between joint and conditional PDFs

“The PDF of x given a value for y”“The PDF of x and y taken together”



255

Probability theory: Marginal probability density functions

Marginal PDFs

p(x, y) = p(x|y)× p(y)
Relationship between joint, conditional and marginal PDFs

p(y) =
Z
p(x, y)dx

p(x) =
Z
p(x, y)dy

A marginal PDF is a 
summation of probabilities
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Prior probability density functions

What we know from previous experiments, or what we guess...

Beware: there is no such thing as a non-informative prior

p(x) = k exp

(

c
(xc xo)2

2~2

)

p(m) = k exp

½
c
1

2
(mcmo)

TCc1m (mcmo)

¾

p(x)dx= p(y)dy

p(x) = C

p(y) = p(x)
dx

dy

p(x2) =
C

2x

Beware: there is no such thing as a non-informative prior

As A � � this is not proper !
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Likelihood functions

The likelihood that the data would have occurred for a given model

Maximizing likelihoods is what Frequentists do. It is what we did earlier.

p(di|x) = exp

(

c
(xc xo,i)2

2~2i

)

p(d|m) = exp

½
c1
2
(dcGm)TCc1D (dcGm)

¾

max
m

p(d|m) = min
m

c ln(p(d|m))

= min
m

(dcGm)TCc1D (dcGm)

Maximizing the likelihood = minimizing the data prediction error
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Bayes’ theorem 

p(m|d, I) � p(d|m, I)× p(m|I)

Conditional PDFs
Bayes’ rule (1763)

Posterior probability density � Likelihood  x Prior probability density

All information is expressed in terms of probability density functions 

1702-1761

What is known before 
the data are collected

Measuring fit 
to data

What is known after 
the data are collected

Assumptions

model parametersdata
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Example: Measuring the mass of an object 

If we have an object whose mass, m,  we which to determine. Before we collect 
any data we believe that its mass is approximately 10.0 ± 1Pg. In probabilistic 
terms we could represent this as a Gaussian prior distribution

p(m|d) � e
c12(mc10.96)

2

1/5

p(m) =
1S
2|
ec

1
2(mc10.0)

2

Suppose a measurement is taken and a value 11.2 P g is obtained, and the 
measuring device is believed to give Gaussian errors with mean 0 and V = 0.5 P g.
Then the likelihood function can be written

p(d|m) =
1

0.5
S
2|
ec2(mc11.2)

2

The posterior PDF becomes a Gaussian centred at the value of 10.96 P g with 
standard deviation V= (1/5)1/2 ~ 0.45. 

p(m|d) =
1

|
ec

1
2(mc10.0)

2c2(mc11.2)2

prior

Likelihood

Posterior
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Example: Measuring the mass of an object 

p(d|m) � exp
½
c1
2
(dcGm)TCc1d (dcGm)

¾

� exp
½
c1
2
[(dcGm)TCc1d (dcGm) + (mcmo)

TCc1m (mcmo)]

¾

The more accurate new data has changed the estimate of m and 
decreased its uncertainty  

For the general linear inverse problem we would have

p(m) � exp
½
c
1

2
(mcmo)

TCc1m (mcmo)

¾
Prior:

Likelihood:

Posterior PDF

One data point problem 
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The biased coin problem

Suppose we have a suspicious coin and we want to know 
if it is biased or not ?

Let D be the probability that we get a head. 

D = 1 : means we always get a head.
D = 0 : means we always get a tail.
D = 0.5 : means equal likelihood of head or tail.

We can collect data by tossing the coin many times 

We seek a probability density function for D given the data

p(n|d, I) � p(d|n, I)× p(n|I)

Posterior PDF � Likelihood x Prior PDF

{H,T, T,H, . . .}
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The biased coin problem

p(n|d, I) � p(d|n, I)× p(n|I)
Posterior PDF � Likelihood  x Prior PDF

What is the prior PDF for D ?

Let us assume that it is uniform 

p(n|I) = 1, 0 w n w 1

What is the Likelihood function ?

p(d|n, I) � nR(1c n)NcR

The probability of observing R heads out of N coin tosses is
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The biased coin problem
We have the posterior PDF for D given the data and our prior PDF

p(n|d, I) � nR(1c n)NcR

After N coin tosses let R = number of heads observed. Then we  
Can plot the probability density for p(D | d) as data are collected

Number 

of data
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The biased coin problem

p(n|d, I) � nR(1c n)NcR

Number 

of data
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The biased coin problem

But what if three people had different opinions about the coin 
prior to collecting the data ?

Dr. Blue knows nothing about the coin.

p(d|n, I) � nR(1c n)NcR

Dr. Red thinks the coin is either highly biased to heads or tails. 

Dr. Green thinks the coin is likely to be almost fair. 
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The biased coin problem

Number 

of data
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How to choose a prior ?

An often quoted weakness of Bayesian inversion is the 
subjectiveness of the prior.

There is no such thing as a non-informative prior !

If we know that x > 0 and that E{x} = P. 
What is an appropriate prior p(x) ?

A solution is to choose the prior p(x) that maximizes entropy 
subject to satisfying the constraints. Using calculus of 
variations we get

H(X) =
Z �

c�
p(x) ln p(x)dx Entropy 

p(x) =
1

y
ecx/y, x x 0
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In the Bayesian treatment, all inferences are expressed in terms of
probabilities.

Bayes’ theorem tells us how to combine a priori information with the
information provided by the data, and all are expressed as PDFs. 

All Bayesian inference is relative. We always compare what we know
after the data are collected to what we know before the data are 
collected. In practice this means comparing the a posteriori PDF 
with the a priori PDF. 

Bayesians argue that this is just a formalization of logical inference.

Criticisms are that non-informative prior’s do not exist, and hence
we introduce information if prior’s are assumed for convenience. 

The general framework is appealing but can not usually be applied
when the number of unknowns is >= 103. 

Recap: Probabilistic inference 
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What can we do with the posterior PDF ?

We could map it out over all of model space
Only feasible when dimension of the model 
space is small.

We seek the maximum of posterior PDF (MAP) and its covariance

This is equivalent to the optimization approach earlier.
Would not make sense when the problem is multi-modal
or when the covariance is not representative of its shape.

We generate model (samples) whose density follows the 
posterior PDF. Posterior simulation is the main technique used 
in computational statistics.

�(m,d) = (dcGm)TCc1d (dcGm)+(mcmo)
TCc1m (mcmo)

max
m

�(m,d); calculate CM

In a Bayesian approach the complete Posterior PDF is the answer to
the inverse problem, and we always look at its properties.


