ECE295, Data Assimilation and Inverse Problems,

Spring 2015

1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides
8 April, SVD (Aster ch 2 and 3) Slides

15 April, Regularization (ch 4)

22 April, Sparse methods (ch 7.2-7.3), radar

29 April, more on Sparse

6 May, Bayesian methods and Monte Carlo methods (ch 11)

13 May, Introduction to sequential Bayesian methods, Kalman Filter (KF)
20 May, Ensemple Kalman Filer (EnKF)

27 May, EnKF, Particle Filter,

3 June, Markov Chain Monte Carlo

Homework:

Just email the code to me (I dont need anything else).

Call the files LastName ExXX.

Homework is due 8am on Wednesday.

8 April: Hw 1: Download the matlab codes for the book (cd_5.3) from this website

15 April: SVD analysis:
SVD homework. You can also try replacing the matrix in the Shaw problem with the beamforming sensing
matrix. The sensing matrix is available here .

22 April
Late April: Beamforming
May: Ice-flow from GPS




Compressive sensing in acoustics and seismology
Peter Gerstoft

Sparse/compressive methods has seen a huge growth in the
last decade, as many methods are inherently sparse

x =argmin I x I, subject tollAx —-bll,<¢

Yao, Gerstoft, Shearer, Mecklenbrauker (2011), Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake:
Frequency-dependent Rupture Modes, GRL

Yardim, Gerstoft, Hodgkiss, Traer (2014), Compressive geoacoustic inversion, JASA
Menon, Gerstoft (2013), High resolution beamforming using L1 minimization, Proc. Acoustics.

Xenaki, Gerstoft, Mosegaard (2014), Compressed beamforming, JASA submitted,

Mecklenbrauker, Gerstoft, Panahi, Viberg (2013), Sequential Bayesian Sparse Source Reconstruction using Array Data, IEEE TSP.
Hu, Gerstoft (2014), Sparse Signal Reconstruction for Direction of Arrival Tracking, IEEE TSP subm.,

Yao, Shearer, Gerstoft (2013), Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust
ruptures, PNAS



Structure of talk

Introduction (13 slides)

Beamfoming intro (7 slides)

— Menon, Gerstoft (2013), High resolution beamforming using L1 minimization, Proc.
Acoustics.

Fathometer (10 slides)

— Yardim, Gerstoft, Hodgkiss, Traer (2014), Compressive geoacoustic inversion, JASA

Earthquake (7 slides)

— Yao, Gerstoft, Shearer, Mecklenbrauker (2011), Compressive sensing of the Tohoku-
Oki Mw 9.0 earthquake: Frequency-dependent Rupture Modes, GRL

Beamfoming (7 slides)
— Xenaki, Gerstoft, Mosegaard (2014), Compressed beamforming, JASA submitted,



Citations since 2006
Compressed sensing

DL Donoho - Information Theory, IEEE Transactions on, 2006 - ieeexplore.ieee.org
Abstract_Sup‘x\cn ic an unknruun vantar infa dinital imana Ar cinnally wwa nlan tA maacuira

general linear fur Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency

transform coding information

Cited by 9395 F EJ Candés, J Romberg, T Tao - Information Theory, |IEEE ..., 2006 - ieeexplore.ieee.org
Abstract—This paper considers the model problem of recon-structing an object from
incomplete frequency samples. Consider a discrete-time signal and a randomly chosen set
of frequencies. Is it possible to reconstruct from the partial knowledge of its Fourier ...
Cited by 6432 Related articles All 38 versions Importinto BibTeX Saved More

Stable signal recovery from incomplete and inaccurate measurements
EJ Candes, JK Romberg, T Tao - Communications on pure and ..., 2006 - Wiley Online Library

Abstract Suppose we wish to recover a vector x Oe R (eg, a digital signal or image) from
incomplete and contaminated observations y= A x 0+ e; A is an x matrix with far fewer
rows than columns ( « ) and e is an error term. Is it possible to recover x 0 accurately ...
Cited by 2879 Related articles All 27 versions Import into BibTeX Save More

An introduction to compressive sampling
EJ Candés, MB Wakin - Signal Processing Magazine, IEEE, 2008 - ieeexplore.ieee.org

This article surveys the theory of compressive sampling, also known as compressed sensing
or CS, a novel sensing/sampling paradigm that goes against the common wisdom in data
acquisition. CS theory asserts that one can recover certain signals and images from far ...
Cited by 2879 Related articles All 46 versions Importinto BibTeX Save More

(poF) Compressive sensing
R Baraniuk - IEEE signal processing magazine, 2007 - omni.isr.ist.utl.pt

The Shannon/Nygquist sampling theorem tells us that in order to not lose information when

if l
;’{‘a,‘,’;’;",’,’pf.ﬁ;?.‘;:,';" Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm |

Cited by 1794 Re |F Gorodnitsky, BD Rao - Signal Processing, IEEE Transactions ..., 1997 - ieeexplore.ieee.org |
Abstract—We present a nonparametric algorithm for finding localized energy solutions from
limited data. The problem we address is underdetermined, and no prior knowledge of the
shape of the region on which the solution is nonzero is assumed. Termed the FOcal ...
Cited by 858 Related articles All 15 versions Importinto BbTeX Saved More




Wavelet Approximation

1 megapixel image 25k term approx B-term approx error

Thus images are sparse, but is 8 MP needed when aquirering
the picture? => compressive sensing one-pixel camera



Sparse signals /compressive signals are important

« We don’t need sample at double the Nyquist rate

« Many signals are sparse, but we have solved them under non-sparse
assumptions
— Beamforming
— Fourier transform
— Layered structure

* Inverse methods are inherently sparse: We seek the simplest way to
describe the data (Occam’s razor...)

But all this requires new developments

- Mathematical theory

- New algorithms (interior point solvers, convex optimization)
- Signal processing

- New applications/demonstrations



Compressed sensing formulation

b A X €
nxl1 nxm | |
measurements
¥ nonzcro
entries, ||
r<<m
. mx1
b is n X 1 measurement vector sparse signal

A is n X m measurement/Dictionary matrix, m >> n
x 1s m %X 1 desired vector which is sparse with » nonzero entries

€ 1s the measurement noise

An underdetermined system of equations has many solutions
Utilizing x is sparse it can often be solved
This depends on the structure of A (RIP!)



Different applications, but same math

X

3y

measurements

¥ nonzero
entries,
r<<m

b = A ) ¢
Frequency signal = DFT matrix Time-signal
Compressed-Image =random matrix  pixel-image
Seismic signals = travel-time delay source-location
Acoustic signals = beam weight source-location
Reflection sequence = time delay layer-reflector



Greedy Search Method: Matching
Pursuit

» Select a column that is most aligned with the current residual

b A
o FO) = b

> S: set of indices selected

£

+ E

L

.

Practical stop criteria:

* Certain # iterations

T (i-1)
ar

HEEEEEEEEEEEEEE.

° [=argmax

1<j<m

()
r 2smaller than

threshold

» Remove its contribution from the residual
o Update S: If [¢S"™, S =S"2UJ{l} . Or, keep S?the same

> Update rd: r” =P, r" =r"* —aq'r"™



Matching pursuit

« Performance guarantee?
« More advanced search?

« Easy to implement, as in home work.



[ -Norms

1/p

M
Ixll,=| ¥ix, | for p>0

m

m=1

« Classic choices for p are 1, 2, and .

* We will abuse notation and allow also p = 0.



Compressive Sensing / Sparse Recovery

Alternative viewpoint: We try to find the sparsest solution which
explains our noisy measurements

min |l x I, subjectto Il Ax—-bll,<¢&

X

Here, the /,-norm is a shorthand notation for counting the number of
non-zero elements in x.

e
nxl
measurements

¥ NONzero
entries, ||
r<<m




Compressive Sensing / Sparse Recovery

* Unfortunately the /,-norm minimization is not convex and hard to solve.

* We choose to convexify the problem by substituting the /,-norm in place
of the /,-norm.

min |l x |l subjectto Ax—-Dbll,<¢&

X

 This can also be formulated as

minllxIl +A 11 Ax-bll,
X

minll Ax-bll, +A' I x I
X

min Il Ax-b/ll, subjectto lIxll <o



. P .
mmH[xi,xz]T”p subjectto ax, +ax,=b

a,x,+ax,=b

A x: A

equal-norm
-~~~ contour

osp<1 p=1 p>1



Applications

« MEG/EEG/MRI source location (earthquake location)
« Channel equalization

« Compressive sampling (beyond Nyquist sampling!)
 Compressive camera!

Lots of low hanging fruits
« Beamforming
 Fathometer

» Geoacoustic inversion

« Sequential estimation

« Bayesian

» Grid free methods

source space (x) sensor space (b)



Resources

WEB
* http://nuit-blanche.blogspot.com/

 http://dsp.rice.edu/cs

BOOKS
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Example 7.4

Consider the recovery of a signal, m, shown in Figure 7.18. This 10-s long time series
of n= 1001 time points, f;, is sampled at 100 samples/s and consists of two sine waves

at fi = 25 and o = 35Hz:
m; = h;- (5 cosQfit;) +2 cosufot;)) 1<i<n, (7.24)

where the signal envelope has also been smoothed with term-by-term multiplication by
a Hann taper function,

hi=—= (1—cos(2r(i—1)/n)) 1 <i<n. (7.25)

DO
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L2 solutions
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Figure 7.19 Signal recovery using second-order Tikhonov regularization. Solution amplitudes are
normalized to improve legibility.
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Figure 7.20 A representative solution using second-order Tikhonov regularization that approximately
satisfies the discrepancy principle from Figure 7.19 (a = 10).



L1 solutions
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Figure 7.21 Signal recovery using compressive sensing with 100 signal measurements. Solution
amplitudes are normalized to improve legibility.
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Figure 7.22 A representative solution obtained from Figure 7.21 using compressive sensing with
a = 100 that approximately satisfies the discrepancy principle.



CS BEAMFORM INTRO

b = A ) ¢
Seismic signals = travel-time delay source-location
Acoustic signals = beam weight source-location
Reflection sequence = time delay layer-reflector

Compressed-Image =random matrix pixel-image



Direction of arrival estimation

Plane waves from a source/interferer
impinging on an array/antenna

True DOA is sparse in the angle domain

e:{oa 10a01a0a"' a0a92507"° 30}




Conventional beamforming
Plane wave weight vector w; = [1,e~*sin(0) ... e=uN-1)sin(6:)]T

B(6) = [w" (6)b]?
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ULA, half-wavelength spacing, N = 20 sensors, 6; = 20°, 6, = 30°,




Conventional beamforming

Equivalent to solving the #; problem with A = [wy,--- ,wy|, M > N.
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A is an overcomplete dictionary of candidate DOA vectors. Columns
span —90° to 90° in steps of 1° (M = 181).




/1 minimization
In contrast £; minimization provides a sparse solution with exact recovery:

min ||x||1 subject to Ax=b
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Columns of A span —90° to 90° in steps of 1° (M = 181).



5

Resolving closely spaced signals
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Resolving closely spaced signals
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