
ECE295, Data Assimilation and Inverse Problems, 
Spring 2015 

 
1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 
8 April, SVD (Aster ch 2 and 3) Slides 
15 April, Regularization (ch 4) 
22 April, Sparse methods (ch 7.2-7.3), radar 
29 April, more on Sparse 
6 May, Bayesian methods and Monte Carlo methods (ch 11) 
13 May, Introduction to sequential Bayesian methods, Kalman Filter (KF) 
20 May, Ensemple Kalman Filer (EnKF) 
27 May, EnKF, Particle Filter,  
3 June, Markov Chain Monte Carlo 
 
Homework:  
Just email the code to me (I dont need anything else).  
Call the files LastName_ExXX.  
Homework is due 8am on Wednesday.  
8 April: Hw 1: Download the matlab codes for the book (cd_5.3) from this website  
15 April: SVD analysis: 
SVD homework. You can also try replacing the matrix in the Shaw problem with the beamforming sensing 
matrix. The sensing matrix is available here . 
22 April 
Late April: Beamforming 
May: Ice-flow from GPS 



Compressive sensing in acoustics and seismology 
Peter Gerstoft 

Yao, Gerstoft,  Shearer, Mecklenbräuker (2011), Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: 
Frequency-dependent Rupture Modes, GRL 
Yardim, Gerstoft, Hodgkiss, Traer (2014), Compressive geoacoustic inversion, JASA  
Menon, Gerstoft (2013), High resolution beamforming using L1 minimization, Proc. Acoustics. 
Xenaki, Gerstoft, Mosegaard (2014), Compressed beamforming, JASA submitted,  
Mecklenbräuker, Gerstoft, Panahi, Viberg (2013), Sequential Bayesian Sparse Source Reconstruction using Array Data, IEEE TSP.  
Hu, Gerstoft (2014), Sparse Signal Reconstruction for Direction of Arrival Tracking, IEEE TSP subm.,  
Yao, Shearer, Gerstoft (2013), Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust 
ruptures, PNAS 

Sparse/compressive methods has seen a huge growth in the 
last decade, as many methods are inherently sparse 
 

x̂ = argmin || x ||1 subject to ||Ax −b ||2< ε



Structure of talk 
•  Introduction (13 slides) 
•  Beamfoming intro (7 slides) 

–  Menon, Gerstoft (2013), High resolution beamforming using L1 minimization, Proc. 
Acoustics. 

•  Fathometer (10 slides) 
–  Yardim, Gerstoft, Hodgkiss, Traer (2014), Compressive geoacoustic inversion, JASA  

•  Earthquake (7 slides) 
–  Yao, Gerstoft,  Shearer, Mecklenbräuker (2011), Compressive sensing of the Tohoku-

Oki Mw 9.0 earthquake: Frequency-dependent Rupture Modes, GRL 

•  Beamfoming (7 slides) 
–  Xenaki, Gerstoft, Mosegaard (2014), Compressed beamforming, JASA submitted,  



Citations since 2006 



Thus images are sparse, but is 8 MP needed when aquirering 
the picture? => compressive sensing one-pixel camera 



Sparse signals /compressive signals are important 

•  We don’t need sample at double the Nyquist rate 
•  Many signals are sparse, but we have solved them under non-sparse 

assumptions 
–  Beamforming 
–  Fourier transform 
–  Layered structure  

•  Inverse methods are inherently sparse: We seek the simplest way to 
describe the data (Occam’s razor…) 

But all this requires new developments 
-  Mathematical theory 
-  New algorithms (interior point solvers, convex optimization) 
-  Signal processing 
-  New applications/demonstrations 



Compressed sensing formulation 

•  An underdetermined system of equations has many solutions 
•  Utilizing x is sparse it can often be solved 
•  This depends on the structure of A (RIP!) 



                      b          =            A                  x 
Frequency signal      =  DFT matrix          Time-signal 
Compressed-Image  = random matrix  pixel-image    
      Seismic signals   = travel-time delay  source-location 
      Acoustic signals  = beam weight        source-location 
Reflection sequence = time delay            layer-reflector 

Different applications, but same math 





Matching pursuit 
•  Performance guarantee? 
•  More advanced search? 

•  Easy to implement, as in home work. 



lp-Norms 
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  for  p > 0

•  Classic choices for p are 1, 2, and ∞. 

•  We will abuse notation and allow also p = 0. 



Compressive Sensing / Sparse Recovery 
•  Alternative viewpoint: We try to find the sparsest solution which 

explains our noisy measurements 

•  Here, the l0-norm is  a shorthand notation for counting the number of 
non-zero elements in x.  

ETH Zürich 12 

min
x

|| x ||0 subject to ||Ax−b ||2< ε



Compressive Sensing / Sparse Recovery 
•  Unfortunately the l0-norm minimization is not convex and hard to solve. 
•  We choose to convexify the problem by substituting the l1-norm in place 

of the l0-norm. 

 
•  This can also be formulated as 

min
x

|| x ||1 +λ ||Ax -b ||2
min
x

||Ax -b ||2 +λ ' || x ||1

min
x

||Ax -b ||2 subject to || x ||1< δ

min
x

|| x ||1 subject to ||Ax−b ||2< ε





Applications 
•  MEG/EEG/MRI source location (earthquake location) 
•  Channel equalization 
•  Compressive sampling (beyond Nyquist sampling!) 
•  Compressive camera! 

Lots of low hanging fruits 
•  Beamforming 
•  Fathometer 
•  Geoacoustic inversion 
•  Sequential estimation 
•  Bayesian 
•  Grid free methods 



Resources 
WEB 
•  http://nuit-blanche.blogspot.com/ 

•  http://dsp.rice.edu/cs 

BOOKS 



Example 7.4 





L2 solutions 



L1 solutions 



CS BEAMFORM INTRO 

                      b          =            A                  x 
      Seismic signals   = travel-time delay  source-location 
      Acoustic signals  = beam weight        source-location 
Reflection sequence = time delay            layer-reflector 
Compressed-Image  = random matrix  pixel-image    














