
ECE295,	
  Data	
  Assimila0on	
  and	
  Inverse	
  Problems,	
  Spring	
  2015	
  
	
  
1	
  April,	
  Intro;	
  Linear	
  discrete	
  Inverse	
  problems	
  (Aster	
  Ch	
  1	
  and	
  2)	
  Slides	
  
8	
  April,	
  SVD	
  (Aster	
  ch	
  2	
  and	
  3)	
  Slides	
  
15	
  April,	
  RegularizaFon	
  (ch	
  4)	
  
22	
  April,	
  Sparse	
  methods	
  (ch	
  7.2-­‐7.3)	
  
29	
  April,	
  more	
  on	
  Sparse	
  
6	
  May,	
  Bayesian	
  methods	
  and	
  Monte	
  Carlo	
  methods	
  (ch	
  11)	
  
13	
  May,	
  IntroducFon	
  to	
  sequenFal	
  Bayesian	
  methods,	
  Kalman	
  Filter	
  (KF)	
  
20	
  May,	
  Ensemple	
  Kalman	
  Filer	
  (EnKF)	
  
27	
  May,	
  EnKF,	
  ParFcle	
  Filter,	
  	
  
3	
  June,	
  Markov	
  Chain	
  Monte	
  Carlo	
  
	
  
Homework:	
  	
  
Just	
  email	
  the	
  code	
  to	
  me	
  (I	
  dont	
  need	
  anything	
  else).	
  	
  
Call	
  the	
  files	
  LastName_ExXX.	
  	
  
Homework	
  is	
  due	
  8am	
  on	
  Wednesday.	
  	
  
8	
  April:	
  Hw	
  1:	
  Download	
  the	
  matlab	
  codes	
  for	
  the	
  book	
  (cd_5.3)	
  from	
  this	
  website	
  	
  
15	
  April:	
  SVD	
  analysis:	
  
SVD	
  homework.	
  You	
  can	
  also	
  try	
  replacing	
  the	
  matrix	
  in	
  the	
  Shaw	
  problem	
  with	
  the	
  beamforming	
  sensing	
  matrix.	
  The	
  
sensing	
  matrix	
  is	
  available	
  here	
  .	
  
22	
  April	
  
Late	
  April:	
  Beamforming	
  
May:	
  Ice-­‐flow	
  from	
  GPS	
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Recap: Linear discrete inverse problems

The Least squares solution minimizes the prediction error.

The covariance matrix describes how noise propagates from 
the data to the estimated model

Goodness of fit criteria tells us whether the least squares 
model adequately fits the data, given the level of noise.

Chi-square with N-M degrees of freedom

Chi-square with M degrees of freedom

Gives confidence intervals

The resolution matrix describes how the estimated model 
relates to the true model
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Once a best fit solution has been obtained we test goodness of fit with a 
chi-square test (assuming Gaussian statistics)

If the model passes the goodness of fit test we may proceed to evaluating 
model covariance (if not then your data errors are probably too small)

Evaluate model covariance matrix

Plot model or projections of it onto chosen subsets of parameters

Calculate confidence intervals using projected equation

Recap: Goodness of fit and model covariance

Where '2 follows a F2
1 distribution
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Recap: Linear discrete inverse problems
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SVD	
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Data and model null spaces
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m† = G†dobs = VpS
c1
p UTp dobs

Moore-Penrose inverse and data null space

The Moore-Penrose pseudo or generalized inverse of G is written

G† = VpS
c1
p UTp

G = UpSpV
T
p

It is the unique matrix that satisfies four special properties

Even when G has zero eigenvalues the Moore-Penrose inverse always exists
and has desirable properties

GG†G = G

G†GG† = G†

(GG†)T = GG†

(G†G)T = G†G

d = Gm
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Case 3: 
Only a data null space exists
Uo exists, Vo does not exist

Properties of the Moore-Penrose inverse

U_p and V_p always exist and there are FOUR possible situations to consider

Case 1: 
No model or data null space
Uo and Vo do not exist

Case 2: 
Only a model null space exists
Uo does not exist, Vo exists

Case 4: 
Both data and model null space exists
Uo and Vo exists
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Covariance and Resolution of the pseudo inverse

What is the model covariance matrix for the generalized inverse ?

CM = ~2G†(G†)T

For the caseCd = ~2I

= ~2VpS
c2
p V Tp

G† = VpS
c1
p UTp

� CM = ~2
pX

i=1

viv
T
i

s2i

Sp = diag[s1, s2, . . . , sp]

Recall that Sp is a diagonal matrix of singular ordered values

As the number of singular values, p, increases the variance of
the model parameters increases !

CM = G†Cd(G
†)T

How does data noise propagate into the model ?
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Covariance and Resolution of the pseudo inverse

Model resolution matrix 

As the number of singular values, p, increases the resolution of
the model parameters increases !

G† = VpS
c1
p UTp

R = G†G

= VpS
c1
p UTp UpSpV

T
p

= VpV
T
p

As p increases the model null space decreases

p�M : V Tp � V c1p , R� I

We see the trade-off between variance and resolution

How is the estimated model related to the true model ?

m† = Rmtrue



122

Worked example: tomography

Using rays 1- 4

G =

�

�����

1 0 1 0
0 1 0 1

0
S
2
S
2 0S

2 0 0
S
2

�

�����

GTG =

�

����

3 0 1 2
0 3 2 1
1 2 3 0
2 1 0 3

�

����

This has eigenvalues 0, 2, 4, 6.

Vo =

�

����

0.5
0.5

c0.5
c0.5

�

����

qd = Gqm

Gvo = 0

s1
2 = 6 s2

2 = 4 s3
2 = 2 s4

2 = 0

Vp =

�

����

0.5 c0.5 c0.5
0.5 0.5 0.5
0.5 0.5 c0.5
0.5 c0.5 0.5

�

����



122

Worked example: tomography

Using rays 1- 4

G =

�

�����

1 0 1 0
0 1 0 1

0
S
2
S
2 0S

2 0 0
S
2

�
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�
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�
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�

����
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Worked example: Eigenvectors

Vp =

�

����

0.5 c0.5 c0.5
0.5 0.5 0.5
0.5 0.5 c0.5
0.5 c0.5 0.5

�

����

Vo =

�

����

0.5
0.5

c0.5
c0.5

�

����

S1
2=6 S2

2=4

S3
2=2



124

Worked example: tomography

Using eigenvalues all non zero eigenvalues s1, s2 and s3 the 
resolution matrix becomes

qm = Rqmtrue = VpV
T
p qmtrue

R =

�

����

0.75 c0.25 0.25 0.25
c0.25 0.75 0.25 0.25
0.25 0.25 0.75 c0.25
0.25 0.25 c0.25 0.75

�

����

Input model Recovered model

Vp =

�

����

0.5 c0.5 c0.5
0.5 0.5 0.5
0.5 0.5 c0.5
0.5 c0.5 0.5

�

����
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Worked example: tomography

Using eigenvalues s1, s2 and s3 the model covariance becomes

CM =
~2

48

�

����

11 c7 5 c1
c7 11 c1 5
5 c1 11 c7

c1 5 c7 11

�

����

� CM = ~2
pX

i=1

viv
T
i

s2i

s1
2 = 2 s2

2 = 4 s3
2 = 6

CM =
~2

4

�
!!!�

!!!�

1

2

�

%%%#

1 c1 1 c1
c1 1 c1 1
1 c1 1 c1

c1 1 c1 1

�

&&&$+
1

4

�

%%%#

1 c1 c1 1
c1 1 1 c1
c1 c1 1 c1
1 c1 c1 1

�

&&&$+
1

6

�

%%%#

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

�

&&&$

�
!!! 

!!!�
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Worked example: tomography

Repeat using only one singular value s3 =6
Vp =

�

����

0.5
0.5
0.5
0.5

�

����

CM = ~2
pX

i=1

viv
T
i

s2i

Model resolution matrix

R = VpV
T
p =

1

4

�

����

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

�

����

Model covariance matrix

=
~2

24

�

����

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

�

����

Input Output
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There may exist a model null space -> models that can not 
be constrained by the data.

There may exist a data null space -> data that can not be fit by 
any model.

The general linear discrete inverse problem may be simultaneously
under and over determined (mix-determined).

Singular value decomposition is a framework for dealing with 
ill-posed problems.

The Pseudo inverse is constructed using SVD and provides a 
unique model with desirable properties. 

Fits the data in a least squares sense
Gives a minimum length model (no component in the null space)

Model Resolution and Covariance can be traded off by choosing the
number of eigenvalues to use in reconstruction.

Recap: Singular value decomposition 



Regulariza0on	
  



REGULARIZATION	
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Regularization

The idea behind SVD is to limit the degree of freedom in the model and 
fit the data to an acceptable level. Retain only those features necessary 
to fit the data.

A general framework for solving non-unique inverse problems is to 
introduce regularization. Regularization makes a non-unique problem 
become a unique problem. How does it do this ?

We want to minimize a combination of data misfit and some property of 
the model that measures extravagant behaviour, e.g.

Inverse problem � nonlinear optimization problem

�(m) = (dcg(m))TCc1d (dcg(m))+y(mcmo)
TCc1m (mcmo)
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Solutions to inverse problems

Optimal data 
fitting model

Extremal model

Data acceptable 
models

�(m) = (dcg(m)TCc1d (dcg(m)+y(mcmo)
TCc1M (mcmo)

The general 
framework is 
optimization
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Damped least squares

�(d,m) = (dcGm)TCc1d (dcGm)+y(mcmo)
TCc1M (mcmo)

We seek the model that minimizes

After some algebra we get

mDLS = (GTCc1D G+yCc1M )c1(GTCc1D d+yCc1M mo)

min ||(dcGm)||22 + y||m||22

Normal equations become

(GTG+ yI)m = GTd

this system of linear equations will have a unique solution

which is called the Tikhonov solution

This is the damped least squares solution. A special case is to 
minimise a weighted sum of the data misfit and the model 
norm.



145

L-curve solution

Choose P that is nearest
the elbow of the curve

(GTG+ yI)m = GTd

Perform repeat solutions of the normal equations for different P and 
select the one which lies near the elbow of the trade-off curve

See example 5.1 of Aster et al. (2005)

With this value of P we 
can construct a particular 
Tikhonov solution

Elbow is estimated visually -> potentially subjective if elbow is not 
clear
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Tikhonov: Discrepancy principle

(GTG+ yI)m = GTd

Discrepancy principle gives us a value of G and consequently a value for P

If the N data have Gaussian errors with known variance N(0,V2) then we 
would expect that on average that each residual (di – GI,j mj) would be 

approximately V . Hence we have

||dcGm||2 = N~2

� q = ~
S
N

�2N(50%)c.f.

We get an expected value of the norm of 
the prediction error from the number of 
data and the standard deviation of the data

Perform repeated solutions until 

||dcGm|| = q
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Tikhonov regularization: Shaw problem

L-curve for the 
Shaw problem

Fortunately a nice clear elbow
is visible in this log-log plot,
Trade off parameter P

is easily picked.

S
yL = 5.35× 10c6

S
yq = 4.29× 10c6

q = 20× 10c12 = 4.47× 10c6

N [0, (10c6)2]

Tikhonov solution for PG

||m||= 0.67L-curve
solution PL

(GTG+ yI)m = GTd
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SVD and Tikhonov regularization

Tkihonov solution 

m = (GTG+ yI)c1GTd

It can be shown...    that this can be written as 

m =
MX

i=1

s2i
s2i + y

Ã
ui · d
si

!

vi

Let 

As singular values si � 0 the solution is not highly sensitive to noise
Because fi � 0 rather than �. 

P filters out (damps) the unstable influence of the small eigenvalues

Now we get very different behaviour

fi =
s2i

s2i + y

si >>
S
yIf then fi� 1

si <<
S
yIf then fi � 0

Filter factors

m† =
pX

i=1

Ã
ui · d
si

!

vi

SVD

G = UpSpV
T
p

Page 91-93 of 
Aster et al (2005)

si > sp fi = 1

si < sp fi = 0

SVD

Look !


