
ECE295,	  Data	  Assimila0on	  and	  Inverse	  Problems,	  Spring	  2015	  
	  
1	  April,	  Intro;	  Linear	  discrete	  Inverse	  problems	  (Aster	  Ch	  1	  and	  2)	  Slides	  
8	  April,	  SVD	  (Aster	  ch	  2	  and	  3)	  Slides	  
15	  April,	  RegularizaFon	  (ch	  4)	  
22	  April,	  Sparse	  methods	  (ch	  7.2-‐7.3)	  
29	  April,	  more	  on	  Sparse	  
6	  May,	  Bayesian	  methods	  and	  Monte	  Carlo	  methods	  (ch	  11)	  
13	  May,	  IntroducFon	  to	  sequenFal	  Bayesian	  methods,	  Kalman	  Filter	  (KF)	  
20	  May,	  Ensemple	  Kalman	  Filer	  (EnKF)	  
27	  May,	  EnKF,	  ParFcle	  Filter,	  	  
3	  June,	  Markov	  Chain	  Monte	  Carlo	  
	  
Homework:	  	  
Just	  email	  the	  code	  to	  me	  (I	  dont	  need	  anything	  else).	  	  
Call	  the	  files	  LastName_ExXX.	  	  
Homework	  is	  due	  8am	  on	  Wednesday.	  	  
8	  April:	  Hw	  1:	  Download	  the	  matlab	  codes	  for	  the	  book	  (cd_5.3)	  from	  this	  website	  	  
15	  April:	  SVD	  analysis:	  
SVD	  homework.	  You	  can	  also	  try	  replacing	  the	  matrix	  in	  the	  Shaw	  problem	  with	  the	  beamforming	  sensing	  matrix.	  The	  
sensing	  matrix	  is	  available	  here	  .	  
22	  April	  
Late	  April:	  Beamforming	  
May:	  Ice-‐flow	  from	  GPS	  
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Recap: Linear discrete inverse problems

The Least squares solution minimizes the prediction error.

The covariance matrix describes how noise propagates from 
the data to the estimated model

Goodness of fit criteria tells us whether the least squares 
model adequately fits the data, given the level of noise.

Chi-square with N-M degrees of freedom

Chi-square with M degrees of freedom

Gives confidence intervals

The resolution matrix describes how the estimated model 
relates to the true model
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Once a best fit solution has been obtained we test goodness of fit with a 
chi-square test (assuming Gaussian statistics)

If the model passes the goodness of fit test we may proceed to evaluating 
model covariance (if not then your data errors are probably too small)

Evaluate model covariance matrix

Plot model or projections of it onto chosen subsets of parameters

Calculate confidence intervals using projected equation

Recap: Goodness of fit and model covariance

Where '2 follows a F2
1 distribution
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SVD	  
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Data and model null spaces
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m† = G†dobs = VpS
c1
p UTp dobs

Moore-Penrose inverse and data null space

The Moore-Penrose pseudo or generalized inverse of G is written

G† = VpS
c1
p UTp

G = UpSpV
T
p

It is the unique matrix that satisfies four special properties

Even when G has zero eigenvalues the Moore-Penrose inverse always exists
and has desirable properties

GG†G = G

G†GG† = G†

(GG†)T = GG†

(G†G)T = G†G

d = Gm
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Case 3: 
Only a data null space exists
Uo exists, Vo does not exist

Properties of the Moore-Penrose inverse

U_p and V_p always exist and there are FOUR possible situations to consider

Case 1: 
No model or data null space
Uo and Vo do not exist

Case 2: 
Only a model null space exists
Uo does not exist, Vo exists

Case 4: 
Both data and model null space exists
Uo and Vo exists
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Covariance and Resolution of the pseudo inverse

What is the model covariance matrix for the generalized inverse ?

CM = ~2G†(G†)T

For the caseCd = ~2I

= ~2VpS
c2
p V Tp

G† = VpS
c1
p UTp

� CM = ~2
pX

i=1

viv
T
i

s2i

Sp = diag[s1, s2, . . . , sp]

Recall that Sp is a diagonal matrix of singular ordered values

As the number of singular values, p, increases the variance of
the model parameters increases !

CM = G†Cd(G
†)T

How does data noise propagate into the model ?
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Covariance and Resolution of the pseudo inverse

Model resolution matrix 

As the number of singular values, p, increases the resolution of
the model parameters increases !

G† = VpS
c1
p UTp

R = G†G

= VpS
c1
p UTp UpSpV

T
p

= VpV
T
p

As p increases the model null space decreases

p�M : V Tp � V c1p , R� I

We see the trade-off between variance and resolution

How is the estimated model related to the true model ?

m† = Rmtrue
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Worked example: tomography

Using rays 1- 4

G =

�

�����

1 0 1 0
0 1 0 1

0
S
2
S
2 0S

2 0 0
S
2

�

�����

GTG =

�

����

3 0 1 2
0 3 2 1
1 2 3 0
2 1 0 3

�

����

This has eigenvalues 0, 2, 4, 6.

Vo =

�

����

0.5
0.5

c0.5
c0.5

�

����

qd = Gqm

Gvo = 0

s1
2 = 6 s2

2 = 4 s3
2 = 2 s4

2 = 0

Vp =

�

����

0.5 c0.5 c0.5
0.5 0.5 0.5
0.5 0.5 c0.5
0.5 c0.5 0.5

�

����
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Worked example: Eigenvectors

Vp =

�

����

0.5 c0.5 c0.5
0.5 0.5 0.5
0.5 0.5 c0.5
0.5 c0.5 0.5

�

����

Vo =

�

����

0.5
0.5

c0.5
c0.5

�

����

S1
2=6 S2

2=4

S3
2=2
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Worked example: tomography

Using eigenvalues all non zero eigenvalues s1, s2 and s3 the 
resolution matrix becomes

qm = Rqmtrue = VpV
T
p qmtrue

R =

�

����

0.75 c0.25 0.25 0.25
c0.25 0.75 0.25 0.25
0.25 0.25 0.75 c0.25
0.25 0.25 c0.25 0.75

�

����

Input model Recovered model

Vp =

�

����

0.5 c0.5 c0.5
0.5 0.5 0.5
0.5 0.5 c0.5
0.5 c0.5 0.5

�

����
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Worked example: tomography

Using eigenvalues s1, s2 and s3 the model covariance becomes

CM =
~2

48

�

����

11 c7 5 c1
c7 11 c1 5
5 c1 11 c7

c1 5 c7 11

�

����

� CM = ~2
pX

i=1

viv
T
i

s2i

s1
2 = 2 s2

2 = 4 s3
2 = 6

CM =
~2

4

�
!!!�

!!!�

1

2

�

%%%#

1 c1 1 c1
c1 1 c1 1
1 c1 1 c1

c1 1 c1 1

�

&&&$+
1

4

�

%%%#

1 c1 c1 1
c1 1 1 c1
c1 c1 1 c1
1 c1 c1 1

�

&&&$+
1

6

�

%%%#

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

�

&&&$

�
!!! 

!!!�
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Worked example: tomography

Repeat using only one singular value s3 =6
Vp =

�

����

0.5
0.5
0.5
0.5

�

����

CM = ~2
pX

i=1

viv
T
i

s2i

Model resolution matrix

R = VpV
T
p =

1

4

�

����

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

�

����

Model covariance matrix

=
~2

24

�

����

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

�

����

Input Output
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There may exist a model null space -> models that can not 
be constrained by the data.

There may exist a data null space -> data that can not be fit by 
any model.

The general linear discrete inverse problem may be simultaneously
under and over determined (mix-determined).

Singular value decomposition is a framework for dealing with 
ill-posed problems.

The Pseudo inverse is constructed using SVD and provides a 
unique model with desirable properties. 

Fits the data in a least squares sense
Gives a minimum length model (no component in the null space)

Model Resolution and Covariance can be traded off by choosing the
number of eigenvalues to use in reconstruction.

Recap: Singular value decomposition 



Regulariza0on	  



REGULARIZATION	  
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Regularization

The idea behind SVD is to limit the degree of freedom in the model and 
fit the data to an acceptable level. Retain only those features necessary 
to fit the data.

A general framework for solving non-unique inverse problems is to 
introduce regularization. Regularization makes a non-unique problem 
become a unique problem. How does it do this ?

We want to minimize a combination of data misfit and some property of 
the model that measures extravagant behaviour, e.g.

Inverse problem � nonlinear optimization problem

�(m) = (dcg(m))TCc1d (dcg(m))+y(mcmo)
TCc1m (mcmo)
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Solutions to inverse problems

Optimal data 
fitting model

Extremal model

Data acceptable 
models

�(m) = (dcg(m)TCc1d (dcg(m)+y(mcmo)
TCc1M (mcmo)

The general 
framework is 
optimization
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Damped least squares

�(d,m) = (dcGm)TCc1d (dcGm)+y(mcmo)
TCc1M (mcmo)

We seek the model that minimizes

After some algebra we get

mDLS = (GTCc1D G+yCc1M )c1(GTCc1D d+yCc1M mo)

min ||(dcGm)||22 + y||m||22

Normal equations become

(GTG+ yI)m = GTd

this system of linear equations will have a unique solution

which is called the Tikhonov solution

This is the damped least squares solution. A special case is to 
minimise a weighted sum of the data misfit and the model 
norm.
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L-curve solution

Choose P that is nearest
the elbow of the curve

(GTG+ yI)m = GTd

Perform repeat solutions of the normal equations for different P and 
select the one which lies near the elbow of the trade-off curve

See example 5.1 of Aster et al. (2005)

With this value of P we 
can construct a particular 
Tikhonov solution

Elbow is estimated visually -> potentially subjective if elbow is not 
clear
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Tikhonov: Discrepancy principle

(GTG+ yI)m = GTd

Discrepancy principle gives us a value of G and consequently a value for P

If the N data have Gaussian errors with known variance N(0,V2) then we 
would expect that on average that each residual (di – GI,j mj) would be 

approximately V . Hence we have

||dcGm||2 = N~2

� q = ~
S
N

�2N(50%)c.f.

We get an expected value of the norm of 
the prediction error from the number of 
data and the standard deviation of the data

Perform repeated solutions until 

||dcGm|| = q
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Tikhonov regularization: Shaw problem

L-curve for the 
Shaw problem

Fortunately a nice clear elbow
is visible in this log-log plot,
Trade off parameter P

is easily picked.

S
yL = 5.35× 10c6

S
yq = 4.29× 10c6

q = 20× 10c12 = 4.47× 10c6

N [0, (10c6)2]

Tikhonov solution for PG

||m||= 0.67L-curve
solution PL

(GTG+ yI)m = GTd
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SVD and Tikhonov regularization

Tkihonov solution 

m = (GTG+ yI)c1GTd

It can be shown...    that this can be written as 

m =
MX

i=1

s2i
s2i + y

Ã
ui · d
si

!

vi

Let 

As singular values si � 0 the solution is not highly sensitive to noise
Because fi � 0 rather than �. 

P filters out (damps) the unstable influence of the small eigenvalues

Now we get very different behaviour

fi =
s2i

s2i + y

si >>
S
yIf then fi� 1

si <<
S
yIf then fi � 0

Filter factors

m† =
pX

i=1

Ã
ui · d
si

!

vi

SVD

G = UpSpV
T
p

Page 91-93 of 
Aster et al (2005)

si > sp fi = 1

si < sp fi = 0

SVD

Look !


