ECE295, Data Assimilation and Inverse Problems, Spring 2015

Peter Gerstoft, 534-7768, gerstoft@ucsd.edu
We meet Wednesday from 5 to 6:20pm in HHS 2305A
Text for first 5 classes: Parameter Estimation and Inverse Problems (2nd Edition) here under UCSD license

Grading S

Classes
1 April, Intro; Linear discrete Inverse problems (Aster Ch 1, 2)
8 April, SVD (Aster ch 2 and 3)
15 April, Regularization (ch 4) Numerical Example: Beamforming
22 April, Sparse methods (ch 7.2-7.3)
29 April, Sparse methods
6 May, Bayesian methods and Monte Carlo methods (ch 11) Numerical Example: Ice-flow from GPS
13 May, Introduction to sequential Bayesian methods, Kalman Filter
20 May, Data assimilation, EnKF
27 May, EnKF, Data assimilation
3 June, Markov Chain Monte Carlo, PF

Homework: Call the files LastName_ExXX.
Homework is due 8am on Wednesday. That way we can discuss in class.
Hw 1: Download the matlab codes for the book (cd_5.3). Run the 3 examples for chapter 2. Come to class with one question about the examples
Hw2: Based on Example 3.3. Adapt it to a complex valued beamforming example.
\% Parameters
$\mathrm{c}=1500$; $\%$ speed of sound
$\mathrm{f}=200$; \quad frequency
Inmhan_-ff. o/ winiolanath

Beamforming example

```
% Parameters
c = 1500; % speed of sound
f=200; % frequency
lambda = c/f; % wavelength
k = 2*pi/lambda;% wavenumber
% ULA-horizontal
N = 20; % number of sensors
d=1/2*lambda; % intersensor spacing
q = [0:1:(N-1)];% sensor numbering
xq = (q-(N-1)/2)*d; % sensor locations
% Bearing grid
theta = [-90:0.5:90];
u = sind(theta);
% Represenation matrix (steering matrix)
A = exp(-1i*2*pi/lambda*xq'*u)/sqrt(N);
```

- REVIEW

Estimation and Appraisal

Over-determined: Linear discrete inverse problem

We seek the model vector \mathbf{m} which minimizes

$$
\phi(m)=\frac{1}{2} r^{T} C_{d}^{-1} r=\frac{1}{2}(d-G m)^{T} C_{d}^{-1}(d-G m)
$$

Note that this is a quadratic function of the model vector.
Solution: Differentiate with respect to \mathbf{m} and solve for the model vector which gives a zero gradient in $\phi(\boldsymbol{m})$
This gives...

$$
\begin{gathered}
\nabla \phi(m)=-G^{T} C_{d}^{-1}(d-G m)=0 \\
\Rightarrow m=\left(G^{T} C_{d}^{-1} G\right)^{-1} G^{T} C_{d}^{-1} d
\end{gathered}
$$

This is the least-squares solution.

A solution to the normal equations:

$$
G^{T} G m=G^{T} d
$$

Over-determined: Linear discrete inverse problem

How does the Least-squares solution compare to the standard equations of linear regression ?

$$
m=\left(G^{T} C_{d}^{-1} G\right)^{-1} G^{T} C_{d}^{-1} d
$$

Given N data y_{i} with independent normally distributed errors and standard deviations σ_{i} what are the expressions for the model parameters $\mathbf{m}=[\mathrm{a}, \mathrm{b}]^{\top}$?

$$
\begin{aligned}
& G m=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{N_{d}}
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{N}
\end{array}\right]=d \\
& m=\left[\begin{array}{cr}
N & \sum_{i=1}^{N} x_{i} \\
\sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\sum_{i=1}^{N} y_{i} \\
\sum_{i=1}^{N} x_{i} y_{i}
\end{array}\right] \\
& m=\frac{1}{N \sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2}}\left[\begin{array}{cc}
\sum_{i=1}^{N} x_{i}^{2} & -\sum_{i=1}^{N} x_{i} \\
-\sum_{i=1}^{N} x_{i} & N
\end{array}\right]\left[\begin{array}{c}
\sum_{i=1}^{N} y_{i} \\
\sum_{i=1}^{N} x_{i} y_{i}
\end{array}\right]
\end{aligned}
$$

Linear discrete inverse problem: Least squares

$$
m_{L S}=\left(G^{T} C_{d}^{-1} G\right)^{-1} G^{T} C_{d}^{-1} d=G^{-g} d
$$

What happens in the under and even-determined cases ?

$$
m=\frac{1}{N \sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2}}\left[\begin{array}{cc}
\sum_{i=1}^{N} x_{i}^{2} & -\sum_{i=1}^{N} x_{i} \\
-\sum_{i=1}^{N} x_{i} & N
\end{array}\right]\left[\begin{array}{c}
\sum_{i=1}^{N} y_{i} \\
\sum_{i=1}^{N} x_{i} y_{i}
\end{array}\right]
$$

- Under-determined, $\mathrm{N}=1$:

Matrix has a zero determinant and a zero eigenvalue an infinite number of solutions exist

- Even-determined, $\mathrm{N}=2$:

$$
\begin{gathered}
\boldsymbol{m}=\left[m_{1}, m_{2}\right]^{T}, \quad m_{2}=\left[\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\right], \quad m_{1}=y_{1}-m_{2} x_{1} . \\
c \boldsymbol{r}=\boldsymbol{d}-\boldsymbol{G} \boldsymbol{m}=\mathbf{0}
\end{gathered}
$$

Prediction error is zero !

Example: Over-determined, Linear discrete inverse problem

The Ballistics example
Given data and noise

t	y
1	$109: 3827$
2	$187: 5385$
3	$267: 5319$
4	$331: 8753$
5	$386: 0535$
6	$428: 4271$
7	$452: 1644$
8	$498: 1461$
9	$512: 3499$
10	$512: 9753$

$\boldsymbol{m}_{L S}=\left[16.4 m, 97.0 \mathrm{~m} / \mathrm{s}, 9.4 \mathrm{~m} / \mathrm{s}^{2}\right]^{T}$
$\boldsymbol{m}_{\text {true }}=\left[10 \mathrm{~m}, 100 \mathrm{~m} / \mathrm{s}, 9.8 \mathrm{~m} / \mathrm{s}^{2}\right]^{T}$

Is the data fit good enough ?

And how to errors in data propagate into the solution?

The two questions in parameter estimation

We have our fitted model parameters
...but we are far from finished!

We need to:

- Assess the quality of the data fit.

Goodness of fit: Does the model fit the data to within the statistical uncertainty of the noise?

- Estimate how errors in the data propagate into the model

What are the errors on the model parameters?

Goodness of fit

Once we have our least squares solution $\mathbf{m}_{\text {LS }}$ how do we know whether the fit is good enough given the errors in the data ?

Use the prediction error at the least squares solution!

$$
\phi\left(m_{L S}\right)=\frac{1}{2}\left(d-G m_{L S}\right)^{T} C_{d}^{-1}\left(d-G m_{L S}\right)=\sum_{i=1}^{N}\left(\frac{d_{i}-\sum_{j=1}^{M} G_{i, j} m_{j}}{\sigma_{i}}\right)^{2}
$$

If data errors are Gaussian this as a chi-square statistic $\chi_{\text {obs }}^{2}$

Goodness of fit

For Gaussian data errors the data prediction error is the square of a Gaussian random variable hence it has a chi-square probability density function with $N-M$ degrees of freedom.

$$
\chi_{\text {obs }}^{2}=\sum_{i=1}^{N}\left(\frac{d_{i}-\sum_{j=1}^{M} G_{i, j} m_{j}}{\sigma_{i}}\right)^{2}
$$

The χ^{2} test provides a means to testing the assumptions that went into producing the least squares solution. It gives the likelihood that the fit actually achieved is reasonable.

Example: Goodness of fit

The Ballistics problem
Given data and noise

t	y
1	$109: 3827$
2	$187: 5385$
3	$267: 5319$
4	$331: 8753$
5	$386: 0535$
6	$428: 4271$
7	$452: 1644$
8	$498: 1461$
9	$512: 3499$
10	$512: 9753$

$$
\begin{gathered}
C_{D}^{-1}=\frac{1}{\sigma^{2}} I \\
\sigma=8 m
\end{gathered}
$$

$$
y_{i}=m_{1}+m_{2} t_{i}-\frac{1}{2} m_{3} t_{i}^{2}
$$

$$
\begin{array}{cc}
\mathrm{t} & \mathrm{y} \\
1 & 109: 3827 \\
2 & 187: 5385 \\
3 & 267: 5319 \\
4 & 331: 8753 \\
5 & 386: 0535 \\
6 & 428: 4271 \\
7 & 452: 1644 \\
8 & 498: 1461 \\
9 & 512: 3499 \\
10 & 512: 9753
\end{array}
$$

$m_{L S}=\left[16.4 m, 97.0 m / s, 9.4 m / s^{2}\right]^{T}$

$$
\chi_{o b s}^{2}=\sum_{i=1}^{N}\left(\frac{d_{i}-\sum_{j=1}^{M} G_{i, j} m_{j}}{\sigma_{i}}\right)^{2}=4.2
$$

How many degrees of freedom ? $v=N-M=10-3=7$

$$
p=\operatorname{Pr}\left(\chi^{2} \geq \chi_{o b s}^{2}\right)=0.76
$$

In practice values between 0.1 and 0.9 are plausible

Goodness of fit

For Gaussian data errors the chi-square statistic has a chisquare distribution with $v=N-M$ degrees of freedom.

$n d f$	$\chi^{2}(5 \%)$	$\chi^{2}(50 \%)$	$\chi^{2}(95 \%)$
5	1.15	4.35	11.07
10	3.94	9.34	18.31
20	10.85	19.34	31.41
50	34.76	49.33	67.50
100	77.93	99.33	124.34

Exercise:

- If I fit 7 data points with a straight line and get $\chi^{2}=10^{-2}$ what would you conclude ?
- If I fit 102 data points with a straight line and get $\quad \chi^{2}=1034.15$ what would you conclude?
- If I fit 52 data points with a straight line and get $\quad \chi^{2}=50$ what would you conclude ?

Goodness of fit

For Gaussian data errors the chi-square statistic has a chisquare distribution with $v=N-M$ degrees of freedom.

$n d f$	$\chi^{2}(5 \%)$	$\chi^{2}(50 \%)$	$\chi^{2}(95 \%)$
5	1.15	4.35	11.07
10	3.94	9.34	18.31
20	10.85	19.34	31.41
50	34.76	49.33	67.50
100	77.93	99.33	124.34

What could be the cause if:

- the prediction error is much too large ? (poor data fit)
- Truly unlikely data errors
- Errors in forward theory
- Under-estimated data errors
- the prediction error is too small ? (too good data fit)
- Truly unlikely data errors
- Over-estimated the data errors
- Fraud!

Solution Appraisal

Solution error

Once we have our least squares solution \mathbf{m}_{LS} and we know that the data fit is acceptable, how do we find the likely errors in the model parameters arising from errors in the data ?

$$
\boldsymbol{m}_{L S}=G^{-g} \boldsymbol{d}
$$

The data set we actually observed is only one realization of the many that could have been observed

$$
\begin{gathered}
\boldsymbol{d}^{\prime} \rightarrow \boldsymbol{d}+\boldsymbol{\epsilon} \\
\boldsymbol{m}_{L S}^{\prime} \rightarrow \boldsymbol{m}_{L S}+\boldsymbol{\epsilon}_{m} \\
\boldsymbol{m}_{L S}^{\prime}=G^{-g} \boldsymbol{d}^{\prime} \\
\boldsymbol{m}_{L S}+\boldsymbol{\epsilon}_{m}=G^{-g}(\boldsymbol{d}+\boldsymbol{\epsilon})
\end{gathered}
$$

The effect of adding noise to the data is to add noise to the solution

$$
\boldsymbol{\epsilon}_{m}=G^{-g} \boldsymbol{\epsilon}
$$

The model noise is a linear combination of the data noise!

Solution error: Model Covariance

Multivariate Gaussian data error distribution

$$
p(\epsilon)=\frac{1}{(2 \pi)^{N_{d} / 2}\left|C_{d}\right|^{N_{d} / 2}} \exp \left\{-\frac{1}{2} \epsilon^{T} C_{d}^{-1} \epsilon\right\}
$$

How to turn this into a probability distribution for the model errors ?
We know that the solution error is a linear combination of the data error

$$
\boldsymbol{\epsilon}_{m}=G^{-g} \boldsymbol{\epsilon}
$$

The covariance of any linear combination Ad of Gaussian

$$
\operatorname{Cov}(A d)=A \operatorname{Cov}(d) A^{T}
$$ distributed random variables \mathbf{d} is

So we have the covariance of the model parameters

$$
C_{M}=\left(G^{-g}\right) C_{d}\left(G^{-g}\right)^{T}
$$

$$
\begin{gathered}
C_{M}=\left(G^{-g}\right) C_{d}\left(G^{-g}\right)^{T} \\
G^{-g}=\left(G^{T} C_{d}^{-1} G\right)^{-1} G^{T} C_{d}^{-1} \\
\Rightarrow \\
C_{M}=\left(G^{T} C_{d}^{-1} G\right)^{-1}
\end{gathered}
$$

The model covariance for a least squares problem depends on data errors and not the data itself! G is controlled by the design of the experiment.

$$
p\left(\epsilon_{m}\right)=k^{\prime} \exp \left\{-\frac{1}{2}\left(m-m_{L S}\right)^{T} C_{M}^{-1}\left(m-m_{L S}\right)\right\}
$$

$\boldsymbol{m}_{L S}$ is the least squares solution
The data error distribution gives a model error distribution!

Solution error: Model Covariance

$$
C_{M}=\left(G^{T} C_{d}^{-1} G\right)^{-1}
$$

For the special case of independent data errors $C_{d}=\sigma^{2} I$

$$
C_{M}=\sigma^{2}\left(G^{T} G\right)^{-1}
$$

Independent data errors

Correlated model errors

For linear regression problem

$$
C_{M}=\frac{\sigma^{2}}{N \sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2}}\left[\begin{array}{cc}
\sum_{i=1}^{N} x_{i}^{2} & -\sum_{i=1}^{N} x_{i} \\
-\sum_{i=1}^{N} x_{i} & N
\end{array}\right]
$$

Example: Model Covariance and confidence intervals

For Ballistics problem

$$
y_{i}=m_{1}+m_{2} t_{i}-\frac{1}{2} m_{3} t_{i}^{2}
$$

$$
\begin{gathered}
C_{M}=\left(G^{T} C_{d}^{-1} G\right)^{-1} \\
C_{D}^{-1}=\frac{1}{\sigma^{2}} I \\
C_{M}=\left[\begin{array}{ccc}
88.53 & -33.60 & -5.33 \\
-33.60 & 15.44 & 2.67 \\
-5.33 & 2.67 & 0.48
\end{array}\right]
\end{gathered}
$$

95\% confidence interval for parameter i

$$
=1.96 \times\left(C_{M}\right)_{i, i}^{1 / 2}
$$

$$
m_{\text {true }}=\left[10 \mathrm{~m}, 100 \mathrm{~m} / \mathrm{s}, 9.8 \mathrm{~m} / \mathrm{s}^{2}\right]^{T}
$$

$m_{L S}=\left[16.4 \pm 18.4 m, 97.0 \pm 7.7 \mathrm{~m} / \mathrm{s}, 9.4 \pm 1.4 \mathrm{~m} / \mathrm{s}^{2}\right]^{T}$

Confidence intervals by projection

The M-dimensional confidence ellipsoid can be projected onto any subset (or combination) of Δ parameters to obtain the corresponding confidence ellipsoid.

Full M-dimensional ellipsoid

$$
\Delta^{2}=\left(m-m_{L S}\right)^{T} C_{M}^{-1}\left(m-m_{L S}\right)
$$

Projected v dimension ellipsoid

$$
\begin{aligned}
\Delta^{2} & =\delta \boldsymbol{m}^{\prime T}\left[C_{M, p r o j}\right]^{-1} \delta \boldsymbol{m}^{\prime} \\
\delta \boldsymbol{m}^{\prime} & =\text { Projected model vector } \\
C_{M, p r o j} & =\text { Projected covariance matrix } \\
\Delta^{2} & =\text { Chosen percentage point of } \\
& \text { the } \chi^{2}{ }_{v} \text { distribution }
\end{aligned}
$$

To find the 90\% confidence ellipse for (x, y) from a 3-D (x, y, z) ellipsoid

$$
\begin{gathered}
\Delta^{2}=4.61 \quad\left[=\chi_{2}^{2}(90 \%)\right] \\
C_{M, p r o j}=\left[\begin{array}{ll}
\sigma_{1,1}^{2} & \sigma_{1,2}^{2} \\
\sigma_{1,2}^{2} & \sigma_{2,2}^{2}
\end{array}\right] \\
\delta m^{\prime}=\left[m_{1}-m_{L S, 1}, m_{2}-m_{L S, 2}\right]^{T}
\end{gathered}
$$

Can you see that this procedure gives the same formula for the 1-D case obtained previously ?

What if we do not know the errors on the data?

Both Chi-square goodness of fit tests and model covariance Calculations require knowledge of the variance of the data.

What can we do if we do not know σ ?
Consider the case of

$$
\begin{gathered}
\chi_{N-M}^{2}=\frac{1}{\sigma^{2}} \sum_{i=1}^{N}\left(d_{i}-\sum_{j=1}^{M} G_{i, j} m_{j}\right)^{2} \Rightarrow \sigma^{2}=\frac{1}{(N-M)} \sum_{i=1}^{N}\left(d_{i}-\sum_{j=1}^{M} G_{i, j} m_{j}\right)^{2} \\
C_{M}=\sigma^{2}\left(G^{T} G\right)^{-1}
\end{gathered}
$$

So we can still estimate model errors using the calculated data errors but we can no long claim anything about goodness of fit.

Model Resolution matrix

If we obtain a solution to an inverse problem we can ask what its relationship is to the true solution

$$
\boldsymbol{m}_{e s t}=G^{-g} \boldsymbol{d}
$$

But we know

$$
\boldsymbol{d}=G \boldsymbol{m}_{t r u e}
$$

and hence

$$
\boldsymbol{m}_{e s t}=G^{-g} G \boldsymbol{m}_{t r u e}=R \boldsymbol{m}_{t r u e}
$$

The matrix R measures how 'good an inverse G^{-9} is.
The matrix R shows how the elements of $m_{\text {est }}$ are built from linear combination of the true model, $\mathrm{m}_{\text {true }}$. Hence matrix R measures the amount of blurring produced by the inverse operator.
For the least squares solution we have

$$
G^{-g}=\left(G^{T} C_{D}^{-1} G\right)^{-1} G^{T} C_{D}^{-1} \quad \Rightarrow R=I
$$

Data Resolution matrix

If we obtain a solution to an inverse problem we can ask what how it compares to the data

$$
\boldsymbol{d}_{p r e}=G \boldsymbol{m}_{e s t}
$$

But we know

$$
\boldsymbol{m}_{e s t}=G^{-g} \boldsymbol{d}_{o b s}
$$

and hence

$$
\boldsymbol{d}_{p r e}=G G^{-g} \boldsymbol{d}_{o b s}=D \boldsymbol{d}_{o b s}
$$

The matrix D is analogous to the model resolution matrix R but measures how independently the model produced by G^{-9} can reproduce the data. If $D=I$ then the data is fit exactly and the prediction error $\mathbf{d - G m}$ is zero.

Recap: Goodness of fit and model covariance

- Once a best fit solution has been obtained we test goodness of fit with a chi-square test (assuming Gaussian statistics)

$$
\left[\chi_{o b s}^{2}=\sum_{i=1}^{N} \frac{\left(d_{i}-\sum_{j=1}^{M} G_{i, j} m_{j}\right)^{2}}{\sigma_{i}^{2}}\right]
$$

- If the model passes the goodness of fit test we may proceed to evaluating model covariance (if not then your data errors are probably too small)
- Evaluate model covariance matrix

$$
C_{M}=\left(G^{T} C_{d}^{-1} G\right)^{-1}
$$

- Plot model or projections of it onto chosen subsets of parameters

$$
\Delta^{\prime 2}=\left(m-m_{L S}\right)^{\prime T} C_{M}^{\prime-1}\left(m-m_{L S}\right)^{\prime}
$$

- Calculate confidence intervals using projected equation

$$
\sigma_{M, i}=\Delta \times \sigma_{i, i} \quad \text { Where } \Delta^{2} \text { follows a } \chi^{2}{ }_{1} \text { distribution }
$$

Recap: Linear discrete inverse problems

- The Least squares solution minimizes the prediction error.

$$
\phi\left(m_{L S}\right)=\left(d-G m_{L S}\right)^{T} C_{d}^{-1}\left(d-G m_{L S}\right)
$$

$$
m_{L S}=\left(G^{T} C_{d}^{-1} G\right)^{-1} G^{T} C_{d}^{-1} d=G^{-g} d
$$

- Goodness of fit criteria tells us whether the least squares model adequately fits the data, given the level of noise.

$$
\phi\left(\boldsymbol{m}_{L S}\right) \rightarrow \chi_{N-M}^{2} \quad \text { Chi-square with } N-M \text { degrees of freedom }
$$

- The covariance matrix describes how noise propagates from the data to the estimated model

$$
C_{M}=\left(G^{T} C_{d}^{-1} G\right)^{-1}
$$

$$
\Delta^{2} \rightarrow \chi_{M}^{2}
$$

$$
\left(m-m_{L S}\right)^{T} C_{M}^{-1}\left(m-m_{L S}\right)<\Delta^{2}
$$

Chi-square with M degrees of freedom Gives confidence intervals

- The resolution matrix describes how the estimated model relates to the true model

Beamforming

$p(f)=\int p(t) e^{-i 2 \pi f t} d t \quad \begin{gathered}\mathrm{FFT}\end{gathered}$ Beamforming frequency
$p(f)=\int p(t) e^{-i 2 \pi d t} d t$
$p(t)=\int p(f) e^{i 2 \pi f t} d f \quad$ IFFT

Pressure field is a sum of plane waves
$p(f, \mathbf{r})=\int p(f, \mathbf{k}) e^{i\left(\mathbf{k}^{T} \mathbf{r}\right)} d \mathbf{k}$
$p(f, \mathbf{k})=\int p(f, \mathbf{r}) e^{-i\left(\mathbf{k}^{T} \mathbf{r}\right)} d \mathbf{r}$

Based of the observed field $p\left(f, \mathbf{r}_{k}\right)$ at discrete ranges \mathbf{r}_{k} the $p\left(f, \mathbf{k}_{j}\right)$ is estimated $p\left(f, \mathbf{k}_{j}\right)=\sum_{k} p\left(f, \mathbf{r}_{k}\right) e^{-i\left(k k_{j} r_{k}\right)}=\mathbf{w}^{H} \mathbf{p}$
Where
$\mathbf{w}=\left[\begin{array}{c}e^{i\left(\mathbf{k}^{T_{r}} \mathbf{r}_{1}\right)} \\ \vdots \\ e^{i\left(\mathbf{k}^{r_{r_{N}}}\right.}\end{array}\right] \quad \mathbf{p}=\left[\begin{array}{c}p\left(f, \mathbf{r}_{1}\right) \\ \vdots \\ p\left(f, \mathbf{r}_{N}\right)\end{array}\right]$
$p(f)=\int p(t) e^{-i 2 \pi f t} d t \quad$ FFT $p(t)=\int p(f) e^{i 2 \pi f t} d f \quad$ IFFT

Beamforminn

Pressure field is a sum of plane waves

$$
\begin{aligned}
B(t, m) & =\sum_{k} p_{k}\left(t-\tau_{k m}\right) \\
& =\sum_{k} \int\left[\int p_{k}\left(t-\tau_{k m}\right) e^{-i 2 \pi f t} d t\right] e^{i 2 \pi f t} d f \\
& =\sum_{k} \int e^{-i 2 \pi f \tau_{k m}}\left[\int p_{k}(t) e^{-i 2 \pi f t} d t\right] e^{i 2 \pi f t} d f \\
& =\sum_{k} \int e^{-i 2 \pi f \tau_{k m}} p_{k}(f) e^{i 2 \pi f t} d f \\
B(f, m) & =\sum_{k} e^{-i 2 \pi f \tau_{k n}} p_{k}(f)=\mathbf{w}^{H} \mathbf{p}
\end{aligned}
$$

Where

$$
\mathbf{w}=\left[\begin{array}{c}
e^{i 2 \pi f \tau_{l n}} \\
\vdots \\
e^{i 2 \pi f \tau_{l n}}
\end{array}\right] \quad \mathbf{p}=\left[\begin{array}{c}
p\left(f, \mathbf{r}_{1}\right) \\
\vdots \\
p\left(f, \mathbf{r}_{N}\right)
\end{array}\right]
$$

Aliazing

$$
d<\lambda / 2 \quad d=\lambda / 2 \quad d>\lambda / 2 \quad d>\lambda / 2 \quad d=\lambda
$$

SVD

Proof: Minimum Length solution

Constrained minimization

$$
\operatorname{Min} \quad L(\boldsymbol{m})=\boldsymbol{m}^{T} \boldsymbol{m}: \boldsymbol{d}=G \boldsymbol{m}
$$

Lagrange multipliers leads to unconstrained minimization of

$$
\begin{gathered}
\phi(\boldsymbol{m}, \boldsymbol{\lambda})=\boldsymbol{m}^{T} \boldsymbol{m}+\boldsymbol{\lambda}^{T}(\boldsymbol{d}-G \boldsymbol{m})=\sum_{j=1}^{M} m_{j}^{2}+\sum_{i=1}^{N} \lambda_{i}\left(d_{i}-G_{i, j} m_{j}\right) \\
\frac{\partial \phi}{\partial \boldsymbol{\lambda}}=\boldsymbol{d}-G \boldsymbol{m}=\mathbf{0} \longrightarrow \frac{\partial \phi}{\partial \lambda_{i}}=\sum_{i=1}^{N}\left(d_{i}-G_{i, j} m_{j}\right) \\
\frac{\partial \phi}{\partial \boldsymbol{m}}=2 \boldsymbol{m}-G^{T} \boldsymbol{\lambda}=\mathbf{0} \longrightarrow \frac{\partial \phi}{\partial m_{j}}=2 m_{j}-\sum_{i=1}^{N} \lambda_{i} G_{i, j} \\
\Rightarrow \boldsymbol{m}=\frac{1}{2} G^{T} \boldsymbol{\lambda} \\
\Rightarrow \boldsymbol{d}=G \boldsymbol{m}=\frac{1}{2} G G^{T} \boldsymbol{\lambda} \\
\Rightarrow \boldsymbol{\lambda}=2\left(G G^{T}\right)^{-1} \boldsymbol{d} \\
\Rightarrow \boldsymbol{m}=G^{T}\left(G G^{T}\right)^{-1} \boldsymbol{d}
\end{gathered}
$$

Minimum Length and least squares solutions

$$
\begin{gathered}
\boldsymbol{m}_{M L}=G^{T}\left(G G^{T}\right)^{-1} \boldsymbol{d} \quad \boldsymbol{m}_{L S}=\left(G^{T} G\right)^{-1} G^{T} \boldsymbol{d} \\
\boldsymbol{m}_{e s t}=G^{-g} \boldsymbol{d}
\end{gathered}
$$

Data resolution matrix

$$
\begin{gathered}
\boldsymbol{d}_{p r e}=D \boldsymbol{d}_{o b s} \\
D=G G^{-g}
\end{gathered}
$$

Minimum length

$$
\begin{array}{cc}
D=G G^{T}\left(G G^{T}\right)^{-1}=I & D=G\left(G^{T} G\right)^{-1} G^{T} \neq I \\
R=G^{T}\left(G G^{T}\right)^{-1} G \neq I & R=\left(G^{T} G\right)^{-1} G^{T} G=I
\end{array}
$$

There is symmetry between the least squares and minimum length solutions. Least squares complete solves the over-determined problem and has perfect model resolution, while the minimum length solves the completely under-determined problem and has perfect data resolution. For mix-determined problems all solutions will be between these two extremes.

Singular value decomposition

SVD is a method of analyzing and solving linear discrete ill-posed problems.
At its heart is the Lanczos decomposition of the matrix G

$$
d=G m
$$

$$
\begin{gathered}
G=U S V^{T} \\
\underset{N \times M}{G}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{N \times N}\right] S\left[\boldsymbol{v}_{1}, \underset{M \times M}{\left.\boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{M}\right]^{T}}\right.
\end{gathered}
$$

U is an $\mathrm{N} \times \mathrm{N}$ ortho-normal matrix with columns that span the data space
V is an M $\times \mathrm{M}$ ortho-normal matrix with columns that span the model space S is an N x M diagonal matrix with non-negative elements \rightarrow singular values

$$
\begin{aligned}
& U U^{T}=U^{T} U=I_{N} \\
& V V^{T}=V^{T} V=I_{M}
\end{aligned}
$$

Ill-posed problems arise when some of the singular values are zero

Singular value decomposition

Given G , how do we calculate the matrices U, V and S ?

$$
G=U S V^{T}
$$

$$
\begin{gathered}
U=\left[\boldsymbol{u}_{1}\left|\boldsymbol{u}_{2}\right| \ldots \mid \boldsymbol{u}_{N}\right] \\
V=\left[\boldsymbol{v}_{1}\left|\boldsymbol{v}_{2}\right| \ldots \mid \boldsymbol{v}_{M}\right]
\end{gathered}
$$

It can be shown that the columns of U are the eigenvectors of the matrix GG^{\top}

$$
G G^{T} \boldsymbol{u}_{i}=s_{i}^{2} \boldsymbol{u}_{i}
$$

Try and prove this !
It can be shown that the columns of V are the eigenvectors of the matrix $\mathrm{G}^{\top} G$

$$
G^{T} G \boldsymbol{v}_{i}=s_{i}^{2} \boldsymbol{v}_{i}
$$

```
Try and prove this !
```

The eigenvalues, $s_{i}{ }^{2}$, are the square of the elements in diagonal of the $N \times M$ matrix S.

$$
\text { If } \mathrm{N}>\mathrm{M} .\left[\begin{array}{cccc}
s_{1} & 0 & \cdots & 0 \\
0 & s_{2} & 0 & 0 \\
\vdots & & \cdots & 0 \\
0 & 0 & 0 & s_{M} \\
\hdashline- & 0 & 0 & 0 \\
0 & 0 & \vdots & \vdots \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{gathered}
\text { If M > N } \\
S=\left[\begin{array}{cccc:ccc}
s_{1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & s_{2} & 0 & 0 & 0 & \cdots & 0 \\
\vdots & & \ddots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & s_{N} & 0 & \cdots & 0
\end{array}\right]
\end{gathered}
$$

Singular value decomposition

$$
S=\left[\begin{array}{cccc}
s_{1} & 0 & \cdots & 0 \\
0 & s_{2} & 0 & 0 \\
\vdots & & \ddots & 0 \\
0 & 0 & 0 & s_{M} \\
\hdashline--c-c-- \\
0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
S=\left[\begin{array}{cccc:ccc}
s_{1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & s_{2} & 0 & 0 & 0 & \cdots & 0 \\
\vdots & & \ddots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & s_{N} & 0 & \cdots & 0
\end{array}\right]
$$

Suppose the first pare non-zero, then $N \times M$ non square matrix $S S$ can be written in a partitioned form

$$
\begin{gathered}
S=\left[\begin{array}{cc}
S_{p} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \quad \mathrm{N}
\end{gathered} \begin{aligned}
& \begin{array}{c}
\text { By convention we order } \\
\text { the singular values } \\
s_{1} \geq s_{2} \geq \cdots \geq s_{p}
\end{array} \\
& S_{p}=\left[\begin{array}{cccc}
s_{1} & 0 & \cdots & 0 \\
0 & s_{2} & 0 & 0 \\
\vdots & & \ddots & 0 \\
0 & 0 & 0 & s_{p}
\end{array}\right] \mathrm{p}
\end{aligned} \begin{aligned}
& U=\left[\boldsymbol{u}_{1}\left|\boldsymbol{u}_{2}\right| \ldots \mid \boldsymbol{u}_{N}\right] \\
&
\end{aligned}
$$

where the submatrix s_{p} is a $p \times p$ diagonal matrix contains the non-zero singular values

$$
p_{\max }=\min (N, M)
$$

Singular value decomposition

If only the first p singular values are nonzero we write

$$
G=\left[U_{p} \mid U_{o}\right]\left[\begin{array}{cc}
S_{p} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[V_{p} \mid V_{o}\right]^{T}
$$

U_{p} represents the first p columns of U
U_{O} represents the last N -p columns of $U \rightarrow$ A data null space is created
V_{p} represents the first p columns of V
V_{O} represents the last M-p columns of $V \rightarrow$ A model null space is created
Properties

$$
\begin{array}{llll}
U_{p}^{T} U_{o}=0 & U_{o}^{T} U_{p}=0 & V_{p}^{T} V_{o}=0 & V_{o}^{T} V_{p}=0 \\
U_{p}^{T} U_{p}=I & U_{o}^{T} U_{o}=I & V_{o}^{T} V_{o}=I & V_{p}^{T} V_{p}=I
\end{array}
$$

Since the columns of V_{0} and U_{0} multiply by zeros we get the compact form for G

$$
G=U_{p} S_{p} V_{p}^{T}
$$

Model null space

Consider a vector made up of a linear combination of the columns of V_{o}

$$
\boldsymbol{m}_{v}=\sum_{i=p+1}^{M} \lambda_{i} \boldsymbol{v}_{i}
$$

The model m lies in the space spanned by columns of V_{o}

$$
G \boldsymbol{m}_{v}=\sum_{i=p+1}^{M} \lambda_{i} U_{p} S_{p} V_{p}^{T} \boldsymbol{v}_{i}=\mathbf{0}
$$

So any model of this type has no affect on the data. It lies in the model null space!

Where have we seen this before ?
Consequence: If any solution exists to the inverse problem then an infinite number will

Assume the model $\mathrm{m}_{l \mathrm{~s}}$ fits the data $G \boldsymbol{m}_{l s}=\boldsymbol{d}_{o b s}$

$$
\begin{array}{rlr}
G\left(\boldsymbol{m}_{l s}+\boldsymbol{m}_{v}\right) & =G \boldsymbol{m}_{l s}+G \boldsymbol{m}_{v} \quad \begin{array}{l}
\text { Uniqueness question } \\
\text { of Backus and Gilbert }
\end{array} \\
& =\boldsymbol{d}_{o b s}+\mathbf{0} &
\end{array}
$$

The data can not constrain models in the model null space

Example: tomography

Idealized tomographic experiment

$$
\begin{gathered}
\delta \boldsymbol{d}=G \delta \boldsymbol{m} \\
G=\left[\begin{array}{cccc}
G_{1,1} & G_{1,2} & G_{1,3} & G_{1,4} \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]
\end{gathered}
$$

What are the entries of G ?

Example: tomography

Using rays 1-4

$$
\begin{aligned}
& G=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & \sqrt{2} & \sqrt{2} & 0 \\
\sqrt{2} & 0 & 0 & \sqrt{2}
\end{array}\right] \\
& G^{T} G=\left[\begin{array}{llll}
3 & 0 & 1 & 2 \\
0 & 3 & 2 & 1 \\
1 & 2 & 3 & 0 \\
2 & 1 & 0 & 3
\end{array}\right]
\end{aligned}
$$

This has eigenvalues 6,4,2,0.

$$
V_{p}=\left[\begin{array}{rrr}
0.5 & -0.5 & -0.5 \\
0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & -0.5 \\
0.5 & -0.5 & 0.5
\end{array}\right] \quad V_{o}=\left[\begin{array}{r}
0.5 \\
0.5 \\
-0.5 \\
-0.5
\end{array}\right] \quad G \boldsymbol{v}_{O}=0
$$

What type of change does the null space vector correspond to ?

Worked example: Eigenvectors
$S_{1}{ }^{2}=6$

$S_{2}{ }^{2}=4$

Data and model null spaces

