
ECE295,	  Data	  Assimila0on	  and	  Inverse	  Problems,	  Spring	  2015	  
Peter	  Gersto),	  534-‐7768,	  gersto)@ucsd.edu	  
We	  meet	  Wednesday	  from	  5	  to	  6:20pm	  in	  HHS	  2305A	  
Text	  for	  first	  5	  classes:	  Parameter	  EsGmaGon	  and	  Inverse	  Problems	  (2nd	  EdiGon)	  	  here	  under	  UCSD	  license	  
Grading	  	  S	  
Classes	  
1	  April,	  Intro;	  Linear	  discrete	  Inverse	  problems	  	  (Aster	  Ch	  1,	  2)	  	  
	  8	  April,	  	  SVD	  (Aster	  ch	  2	  and	  3)	  	  
15	  April,	  RegularizaGon	  (ch	  4)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	   	  	  Numerical	  Example:	  Beamforming	  
22	  April,	  Sparse	  methods	  (ch	  7.2-‐7.3)	  	  
29	  April,	  Sparse	  methods	  
6	  May,	  	  Bayesian	  methods	  and	  Monte	  Carlo	  methods	  (ch	  11)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Numerical	  Example:	  Ice–flow	  from	  GPS	  
13	  May,	  IntroducGon	  to	  sequenGal	  Bayesian	  methods,	  Kalman	  Filter	  	  
20	  May,	  	  Data	  assimilaGon,	  EnKF	  	  
27	  May,	  	  	  EnKF,	  	  Data	  assimilaGon	  	  
3	  June,	  	  	  Markov	  Chain	  Monte	  Carlo,	  PF	  	  
	  
Homework:	  Call	  the	  files	  LastName_ExXX.	  	  
Homework	  is	  due	  8am	  on	  Wednesday.	  That	  way	  we	  can	  discuss	  in	  class.	  
Hw	  1:	  Download	  the	  matlab	  codes	  for	  the	  book	  (cd_5.3).	  Run	  the	  3	  examples	  for	  chapter	  2.	  Come	  to	  class	  with	  one	  
quesGon	  about	  the	  examples	  
Hw2:	  Based	  on	  Example	  3.3.	  Adapt	  it	  to	  a	  complex	  valued	  beamforming	  example.	  
%	  Parameters	  
c	  =	  1500;	  	  	  	  	  	  	  %	  speed	  of	  sound	  
f	  =	  200;	  	  	  	  	  	  	  	  %	  frequency	  
lambda	  =	  c/f;	  	  	  %	  wavelength	  
k	  =	  2*pi/lambda;%	  wavenumber	  
	  	  
%	  ULA-‐horizontal	  
N	  =	  20;	  	  	  	  	  	  	  	  	  %	  number	  of	  sensors	  
d	  =	  1/2*lambda;	  %	  intersensor	  spacing	  
q	  =	  [0:1:(N-‐1)];%	  sensor	  numbering	  
xq	  =	  (q-‐(N-‐1)/2)*d;	  %	  sensor	  locaGons	  
	  
	  



Beamforming	  example	  
%	  Parameters	  
c	  =	  1500;	  	  	  	  	  	  	  %	  speed	  of	  sound	  
f	  =	  200;	  	  	  	  	  	  	  	  %	  frequency	  
lambda	  =	  c/f;	  	  	  %	  wavelength	  
k	  =	  2*pi/lambda;%	  wavenumber	  
	  	  
%	  ULA-‐horizontal	  
N	  =	  20;	  	  	  	  	  	  	  	  	  %	  number	  of	  sensors	  
d	  =	  1/2*lambda;	  %	  intersensor	  spacing	  
q	  =	  [0:1:(N-‐1)];%	  sensor	  numbering	  
xq	  =	  (q-‐(N-‐1)/2)*d;	  %	  sensor	  locaGons	  
%	  Bearing	  grid	  
theta	  =	  [-‐90:0.5:90];	  
u	  =	  sind(theta);	  
	  	  
%	  RepresenaGon	  matrix	  (steering	  matrix)	  
A	  =	  exp(-‐1i*2*pi/lambda*xq'*u)/sqrt(N);	  
	  
	  
	  
	  



•  REVIEW	  
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EsGmaGon	  and	  Appraisal	  
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Over-determined: Linear discrete inverse problem

We seek the model vector m which minimizes

Note that this is a quadratic function of the model vector.
Solution: Differentiate with respect to m and solve for the 
model vector which gives a zero gradient in 

This is the least-squares solution.

A solution to the normal equations: 

This gives…

3

Compare with 
maximum likelihood
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Over-determined: Linear discrete inverse problem

How does the Least-squares solution compare to the standard 
equations of linear regression ?

Given N data yi with independent normally distributed errors 
and standard deviations Vi what are the expressions for the 
model parameters m = [a,b]T ?
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What is m ?

What is the prediction error ?

Linear discrete inverse problem: Least squares

What happens in the under and even-determined cases ?

Matrix has a zero determinant 
and a zero eigenvalue
an infinite number of solutions exist

Under-determined, N=1:

Even-determined, N=2:

Prediction error is zero !

r = dcGm= 0
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Example: Over-determined, Linear discrete inverse 
problem

Given data and noise

The Ballistics example

Calculate G

Is the data fit good enough ? 

And how to errors in data propagate
into the solution ?
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The two questions in parameter 
estimation

We need to:
Assess the quality of the data fit.

Estimate how errors in the data propagate 
into the model

We have our fitted model parameters 

…but we are far from finished !

Goodness of fit: Does the model fit the data to within 
the statistical uncertainty of the noise ?

What are the errors on the model parameters ?
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Goodness of fit

Once we have our least squares solution mLS how do we know 
whether the fit is good enough given the errors in the data ?

Use the prediction error at the least squares solution !

If data errors are Gaussian this as a chi-square statistic 
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Goodness of fit

For Gaussian data errors the data prediction error is the square of 
a Gaussian random variable hence it has a chi-square probability 
density function with N-M degrees of freedom.

ndf �2(5%) �2(50%) �2(95%)
5 1.15 4.35 11.07
10 3.94 9.34 18.31
20 10.85 19.34 31.41
50 34.76 49.33 67.50
100 77.93 99.33 124.34

The     test provides a means to testing the assumptions that  
went into producing the least squares solution. It gives the 
likelihood that the fit actually achieved is reasonable. 

p = 0.05p = 0.95
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Example: Goodness of fit

Given data and noise

The Ballistics problem

How many degrees of freedom  ? Q =N-M = 10 -3=7

In practice values between 0.1 and 0.9 are plausible

4
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Goodness of fit

For Gaussian data errors the chi-square statistic has a chi-
square distribution with X = N-M degrees of freedom.

ndf �2(5%) �2(50%) �2(95%)
5 1.15 4.35 11.07
10 3.94 9.34 18.31
20 10.85 19.34 31.41
50 34.76 49.33 67.50
100 77.93 99.33 124.34

If I fit 7 data points with a straight line and get
what would you conclude ?     

If I fit 102 data points with a straight line and get
what would you conclude ?     

If I fit 52 data points with a straight line and get
what would you conclude ?     

Exercise:
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Goodness of fit

For Gaussian data errors the chi-square statistic has a chi-
square distribution with X = N-M degrees of freedom.

ndf �2(5%) �2(50%) �2(95%)
5 1.15 4.35 11.07
10 3.94 9.34 18.31
20 10.85 19.34 31.41
50 34.76 49.33 67.50
100 77.93 99.33 124.34

the prediction error is too small ? (too good data fit)

the prediction error is much too large ? (poor data fit)   

Truly unlikely data errors Errors in forward theory

What could be the cause if: 

Truly unlikely data errors Over-estimated the data errors

Fraud !

Under-estimated data errors



SoluGon	  Appraisal	  
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Solution error 
Once we have our least squares solution mLS and we know 
that the data fit is acceptable, how do we find the likely errors 
in the model parameters arising from errors in the data ?

d0 � d+ ²

The data set we actually observed is only one realization of 
the many that could have been observed

mLS + ²m = Gcg(d+ ²)

²m = Gcg²

The effect of adding noise to the data is to add noise to the solution

mLS = Gcgd

The model noise is a linear combination of the data noise !

m0
LS �mLS + ²m

m0
LS = Gcgd0
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Solution error: Model Covariance

Multivariate Gaussian data error distribution

How to turn this into a probability distribution for the model errors ? 

We know that the solution error is a linear combination of 
the data error

The covariance of any linear 
combination Ad of Gaussian 
distributed random variables d is  

So we have the covariance of the model parameters

²m = Gcg²
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Solution error: Model Covariance

The data error distribution gives a 
model error distribution !

is the least squares solution 

The model covariance for a least squares problem depends 
on data errors and not the data itself ! G is controlled by  
the design of the experiment.
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Solution error: Model Covariance

For the special case of independent data errors

For linear regression problem

Independent data errors                Correlated model errors
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Example: Model Covariance and confidence intervals

For Ballistics problem

95% confidence interval for parameter i
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Confidence intervals by projection 
The M-dimensional confidence ellipsoid can be projected onto any subset (or

combination) of ' parameters to obtain the corresponding confidence ellipsoid.

Full M-dimensional ellipsoid

Projected Q dimension ellipsoid

Projected model vector
Projected covariance matrix

Chosen percentage point of 
the F2

Q distribution

To find the 90% confidence ellipse for 
(x,y) from a 3-D (x,y,z) ellipsoid

Can you see that this procedure gives the same formula for the 1-D 
case obtained previously ?
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What if we do not know the errors on the data ?

Both Chi-square goodness of fit tests and model covariance 
Calculations require knowledge of the variance of the data.

What can we do if we do not know V ?

Consider the case of 

CD = ~2I
Independent data errors

Calculated from least 
squares solution

So we can still estimate model errors using the calculated data errors
but we can no long claim anything about goodness of fit.
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Model Resolution matrix 

If we obtain a solution to an inverse problem we can 
ask what its relationship is to the true solution

mest = Gcgd

d = Gmtrue

But we knowBut we know

and henceand hence

mest = GcgGmtrue = Rmtrue

The matrix R measures how `good an inverse’ GThe matrix R measures how `good an inverse’ G--gg is.is.

The matrix R shows how the elements of The matrix R shows how the elements of mmestest are built from are built from 
linear combination of the true model, linear combination of the true model, mmtruetrue. Hence matrix R . Hence matrix R 
measures the amount of measures the amount of blurringblurring produced by the inverse produced by the inverse 
operator.operator.

For the least squares solution we haveFor the least squares solution we have

� R = IGcg = (GTCc1D G)c1GTCc1D
5
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Data Resolution matrix 

If we obtain a solution to an inverse problem we can If we obtain a solution to an inverse problem we can 
ask what how it compares to the dataask what how it compares to the data

dpre = Gmest

mest = Gcgdobs

But we knowBut we know

and henceand hence

dpre = GGcgdobs = Ddobs

The matrix D is analogous to the model resolution matrix R The matrix D is analogous to the model resolution matrix R 
but measures how independently the model produced by Gbut measures how independently the model produced by G--gg

can reproduce the data. If D = I then the data is fit exactly can reproduce the data. If D = I then the data is fit exactly 
and the prediction error and the prediction error dd--GGmm is zero.is zero.
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Once a best fit solution has been obtained we test goodness of fit with a 
chi-square test (assuming Gaussian statistics)

If the model passes the goodness of fit test we may proceed to evaluating 
model covariance (if not then your data errors are probably too small)

Evaluate model covariance matrix

Plot model or projections of it onto chosen subsets of parameters

Calculate confidence intervals using projected equation

Recap: Goodness of fit and model covariance

Where '2 follows a F2
1 distribution
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Recap: Linear discrete inverse problems

The Least squares solution minimizes the prediction error.

The covariance matrix describes how noise propagates from 
the data to the estimated model

Goodness of fit criteria tells us whether the least squares 
model adequately fits the data, given the level of noise.

Chi-square with N-M degrees of freedom

Chi-square with M degrees of freedom

Gives confidence intervals

The resolution matrix describes how the estimated model 
relates to the true model



Beamforming	  



Beamforming	  frequency	  
p( f ) = p(t)∫ e−i2π ftdt FFT

p(t) = p( f )∫ ei2π ftdf IFFT

Pressure field is a sum of plane waves

p( f ,r) = p( f ,k)∫ ei(k
Tr)dk

p( f ,k) = p( f ,r)∫ e−i(k
Tr)dr

Based of the observed field p( f ,rk ) at discrete ranges rk  the p( f ,k j ) is estimated

 p( f ,k j ) = p( f ,rk )
k
∑ e−i(k j

Trk ) =wHp

Where

w =
ei(k j
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Beamforming	  
p( f ) = p(t)∫ e−i2π ftdt FFT

p(t) = p( f )∫ ei2π ftdf IFFT

Pressure field is a sum of plane waves

B(t,m) =
k
∑ pk (t −τ km )

= [ ∫∫
k
∑ pk (t −τ km )e−i2π ftdt]ei2π ftdf
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= e−i2π fτ km∫
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B( f ,m) = e−i2π fτ km pk ( f )
k
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Aliazing	  

d < λ / 2 d = λ / 2 d > λ / 2 d > λ / 2 d = λ



SVD	  
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Proof: Minimum Length solution

Min L(m) =mTm : d = Gm

�(m,x) =mTm+ xT (dcGm)

Lagrange multipliers leads to unconstrained minimization of 

#�

#m
= 2mcGTx = 0

Constrained minimization 

#�

#x
= dcGm = 0

�m =
1

2
GTx

� d = Gm =
1

2
GGTx

� x = 2 (GGT )c1d

�m = GT (GGT)c1d

=
MX

j=1

m2j +
NX

i=1

xi(di cGi,jmj)

#�

#mj
= 2mj c

NX

i=1

xiGi,j

#�

#xi
=

NX

i=1

(di cGi,jmj)
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Minimum Length and least squares solutions

mML = GT (GGT )c1d

Data resolution matrix

mLS = (GTG)c1GTd

mest = Gcgd

D = GGcg
dpre = Ddobs

D = G(GTG)c1GT 6= I

Least squaresMinimum length

D = GGT (GGT )c1 = I

There is symmetry between the least squares and minimum length solutions.
Least squares complete solves the over-determined problem and has perfect 
model resolution, while the minimum length solves the completely 
under-determined problem and has perfect data resolution. For mix-determined 
problems all solutions will be between these two extremes.

R = (GTG)c1GTG = IR = GT(GGT)c1G 6= I
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Singular value decomposition

SVD is a method of analyzing and solving linear discrete illSVD is a method of analyzing and solving linear discrete ill--posed problems. posed problems. 

At its heart is the Lanczos decomposition of the matrix G 

G = USV T

For a discussion see Ch. 4 of Aster et al. (2004) 

G = [u1,u2, . . . ,uN ]S[v1, v2, . . . ,vM ]
T

U is an N x N ortho-normal matrix with columns that span the data space

d = Gm

V is an M x M ortho-normal matrix with columns that span the model space

S is an N x M diagonal matrix with non-negative elements � singular values 

UUT = UTU = IN

V V T = V TV = IM

N ×M N ×N M ×M

Ill-posed problems arise when some of the singular values are zero 

Lanczos (1977)



104

S =

�

��������������

s1 0 · · · 0
0 s2 0 0
... . . . 0
0 0 0 sM

0 0 0 0
... ... ... ...
0 0 0 0

�

��������������

It can be shown that the columns of U are the eigenvectors of the matrix GGT

Singular value decomposition

Given G, how do we calculate the matrices U, V and S ?

G = USV T

GGTui = s2i ui

It can be shown that the columns of V are the eigenvectors of the matrix GTG  

GTGvi = s2i vi

The eigenvalues, si
2, are the square of the elements in diagonal of the 

N x M matrix S. 

Try and prove this !

Try and prove this !

U = [u1|u2| . . . |uN ]

V = [v1|v2| . . . |vM ]

If N > M

S =

�

����

s1 0 · · · 0 0 · · · 0
0 s2 0 0 0 · · · 0
... . . . 0 0 · · · 0
0 0 0 sN 0 · · · 0

�

����

If M > N
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S =

�

����

s1 0 · · · 0 0 · · · 0
0 s2 0 0 0 · · · 0
... . . . 0 0 · · · 0
0 0 0 sN 0 · · · 0

�

����

Singular value decomposition

Suppose the first p are non-zero, then N x M non square matrix S S can be 
written in a partitioned form

Sp =

�

����

s1 0 · · · 0
0 s2 0 0
... . . . 0
0 0 0 sp

�

����

S =

"
Sp 0
0 0

#

pmax = min(N,M)

S =

�

��������������

s1 0 · · · 0
0 s2 0 0
... . . . 0
0 0 0 sM

0 0 0 0
... ... ... ...
0 0 0 0

�

��������������

where the submatrix sp is a p x p diagonal matrix contains the non-zero 
singular values 

U = [u1|u2| . . . |uN ]

V = [v1|v2| . . . |vM ]

By convention we order 
the singular values  

s1 x s2 x · · · x sp
N

M

p

p
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Singular value decomposition

G = [Up | Uo]
"
Sp 0
0 0

#

[Vp | Vo]T

If only the first p singular values are nonzero we write

Up represents the first p columns of U
Uo represents the last N-p columns ofU

Vp represents the first p columns of V

Vo represents the last M-p columns ofV

Since the columns of Vo and Uo multiply by zeros we get the 
compact form for G

G = UpSpV
T
p

�  A data null space is created

� A model null space is created

Properties

UTp Uo = 0 V Tp Vo = 0 V To Vp = 0UTo Up = 0

UTp Up = I UTo Uo = I V To Vo = I V Tp Vp = I
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Model null space

mv =
MX

i=p+1

xivi

So any model of this type has no affect on the data. It lies in the 
model null space !

Consider a vector made up of a linear combination of the columns of Vo

Gmv =
MX

i=p+1

xiUpSpV
T
p vi = 0

The model m lies in the space spanned by columns of  Vo

Consequence: If any solution exists to the inverse problem then an 
infinite number will

Gmls = dobsAssume the model mls fits the data 

G(mls+mv) = Gmls+Gmv

= dobs+ 0

The data can not constrain models in the model null space

Uniqueness question 
of Backus and Gilbert

Where have we seen this before ?
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Example: tomography

Idealized Idealized tomographictomographic experimentexperiment

qd = Gqm

G =

�

����

G1,1 G1,2 G1,3 G1,4
... ... ... ...
... ... ... ...
... ... ... ...

�

����

What are the entries of G ?
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Example: tomography

Using rays 1-4

G =

�

�����

1 0 1 0
0 1 0 1

0
S
2
S
2 0S

2 0 0
S
2

�

�����

GTG =

�

����

3 0 1 2
0 3 2 1
1 2 3 0
2 1 0 3

�

����

This has eigenvalues 6,4,2,0.

Vp =

�

����

0.5 c0.5 c0.5
0.5 0.5 0.5
0.5 0.5 c0.5
0.5 c0.5 0.5

�

���� Vo =

�

����

0.5
0.5

c0.5
c0.5

�

����

qd = Gqm

What type of change does the null space vector correspond to ?

Gvo = 0
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Worked example: Eigenvectors

Vp =

�

����

0.5 c0.5 c0.5
0.5 0.5 0.5
0.5 0.5 c0.5
0.5 c0.5 0.5

�

����

Vo =

�

����

0.5
0.5

c0.5
c0.5

�

����

S1
2=6 S2

2=4

S3
2=2 S4

2=0
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Data and model null spaces


