ECE295, Data Assimilation and Inverse Problems, Spring 2015

Peter Gerstoft, 534-7768, gerstoft@ucsd.edu

We meet Wednesday from 5 to 6:20pm in HHS 2305A

Text for first 5 classes: Parameter Estimation and Inverse Problems (2nd Edition) here under UCSD license
Grading S

Classes

1 April, Intro; Linear discrete Inverse problems (Aster Ch 1, 2)

8 April, SVD (Aster ch 2 and 3)

15 April, Regularization (ch 4) Numerical Example: Beamforming

22 April, Sparse methods (ch 7.2-7.3)

29 April, Sparse methods

6 May, Bayesian methods and Monte Carlo methods (ch 11) Numerical Example: Ice-flow from GPS
13 May, Introduction to sequential Bayesian methods, Kalman Filter

20 May, Data assimilation, EnKF

27 May, EnKF, Data assimilation

3 June, Markov Chain Monte Carlo, PF

Homework: Call the files LastName_ExXX.
Homework is due 8am on Wednesday. That way we can discuss in class.

Hw 1: Download the matlab codes for the book (cd_5.3). Run the 3 examples for chapter 2. Come to class with one
guestion about the examples

Hw2: Based on Example 3.3. Adapt it to a complex valued beamforming example.
% Parameters

c=1500; % speed of sound

f =200; % frequency
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Beamforming example

% Parameters

c=1500; % speed of sound
f=200; % frequency

lambda = ¢/f; % wavelength

k = 2*pi/lambda;% wavenumber

% ULA-horizontal

N = 20; % number of sensors

d = 1/2*lambda; % intersensor spacing
g = [0:1:(N-1)];% sensor numbering

xg = (g-(N-1)/2)*d; % sensor locations
% Bearing grid

theta = [-90:0.5:90];

u = sind(theta);

% Represenation matrix (steering matrix)
A = exp(-1i*2*pi/lambda*xq'*u)/sqrt(N);
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Estimation and Appraisal

Appraisal
problem

Estimated model m

Forward problem

Estimation
problem



Over-determined: Linear discrete inverse problem

. L C ith
We seek the model vector m which minimizes e b

H(m) = ;rToglr — ;(d —Gam)’'c;(d - Gm) 7

Note that this is a quadratic function of the model vector.

Solution: Differentiate with respect to m and solve for the
model vector which gives a zero gradient in ¢,(m)

This gives...

Vo(m) = -GTc; (d - Gm) =0

»>m=(GTc;'e)"1¢Tc;'d

This is the least-squares solution.

A solution to the normal equations:

GT'em =a6Td




Over-determined: Linear discrete inverse problem

How does the Least-squares solution compare to the standard
equations of linear regression ?

m = (GTc;'e)y1¢Te;d

Given N data y; with independent normally distributed errors
and standard deviations o; what are the expressions for the
model parameters m = [a,b]T ?
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Linear discrete inverse problem: Least squares

mps = (GTcyley 'cTe;ld=G9d

What happens in the under and even-determined cases ?

m

1 IARE —2?;1"’:'} [ Y }

. 2
NEM a2 - (Ehe) | -sM,s N S ma

#® Under-determined, N=1:

Matrix has a zero determinant
and a zero eigenvalue
an infinite number of solutions exist

Y

® Even-determined, N=2: A

ylL—w I .
m = [my,mo]", mp= [— » M = Y1 M2T]- /

L1 — X2 i
/y' y=a+bx

Y

\r=d—Gm =20

~J

Prediction error is zero !




Example: Over-determined, Linear discrete inverse

problem
. 1 5
The Ballistics example yi = ma + mat; — Emst"'
Given data and noise Calculate G
t ¥ ’
1 109:3827 1 & 1727
2 187:5385 g2
3 267:5319 1 1 G = 1 t_2 1/_2t2
4 331:8753 Cq =51 P :
5 386:0535 o 1 ty 17283
6 4284271 o=l
7 452:1644
8 498:1461 myrg = (GTC;]'G)_IGTC'EId
9 512:3499
10 512:9753
GO0
mrg — [16.4m,9 1T _
s = [16.4m,97.0m/s,9.4m /5] 500
400} . 3
—_ 21T | v
Myrye = [10m,100m/s, 9.8m /5] 8 300
ﬂzuu- ,d’/
Is the data fit good enough ? 00 *
Ct; z a 10 12

&
Time (s)

And how to errors in data propagate
into the solution ?




The two questions in parameter
estimation

We have our fitted model parameters

...but we are far from finished !

We need to:
® Assess the quality of the data fit.

Goodness of fit: Does the model fit the data to within
the statistical uncertainty of the noise ?

® Estimate how errors in the data propagate
into the model

What are the errors on the model parameters ?



Goodness of fit

Once we have our least squares solution m s how do we know
whether the fit is good enough given the errors in the data ?

A

Use the prediction error at the least squares solution !

1 N . —YM G m; &
#(mrg) = E(d—GmLS)TCﬂTl(d—GmLS) — (d' Lij=1 ij)

i—1

%

If data errors are Gaussian this as a chi-square statistic xﬁbs

10



Goodness of fit

For Gaussian data errors the data prediction error is the square of
a Gaussian random variable hence it has a chi-square probability
density function with N-M degrees of freedom.

2
- (4T cm)
i—1 L
p = 0.95 p= %05
—2 ndf x°(5%) x%(50%) x2(95%)
s 5 1.15 4.35 11.07
10 3.94 9.34 18.31

20 10.85 19.34 31.41
50 34.76 49.33 67.50
100 77.93 99.33 124.34

h p=Pr(x* > x%s)

fx2 (z) = 1 v/2—1,—z/2

272 (v /2) p=[, held
obs

The y2test provides a means to testing the assumptions that
went into producing the least squares solution. It gives the

likelihood that the fit actually achieved is reasonable.
16



Example: Goodness of fit

The Ballistics problem ¥ = ma + mot; — lm3t?

Given data and noise

600,

y
109: 3827

187:5385
267:5319 41 1 7 _
331:8753 D = o
286:0535 o
428:4271 =180
452:1644 200}
408: 1461 )
512:3499 100f F
512:9753

500

.
o
=]

Elevation (m)
Lad
(]
[

DD e O s b R =

—

B
Time (s)

mrg = [16.4m,97.0m/s,9.4m /s

N fg._vM .00 \2
Xzob..;: Z (dl ZJ=,1 G.,,m,) =472

i—1 di

How many degrees of freedom ? v =N-M = 10 -3=7
p = Pr(x* > xg,) = 0.76

In practice values between 0.1 and 0.9 are plausible



Goodness of fit

For Gaussian data errors the chi-square statistic has a chi-
square distribution with v = N-M degrees of freedom.

L
B0 TR B B

ndf x%(5%) x°(50%) x2(95%)
5 1.15 4.35 11.07
10 3.94 9.34 18.31 .
20 10.85 19.34 31.41 )
50 34.76 49.33 67.50
100 77.93 99.33 124.34

Exercise:

# If I fit 7 data points with a straight line and get X —Hl
what would you conclude ?

2
# If I fit 102 data points with a straight line and get X =— 1034.15
what would you conclude ?

® If I fit 52 data points with a straight line and get x2 = 50

what would you conclude ?

19



Goodness of fit

For Gaussian data errors the chi-square statistic has a chi-
square distribution with v = N-M degrees of freedom.

ndf x*(5%) x°(50%) x*(95%)

5 1.15
10 3.94
20 10.85
50 34.76
100 77.93

4.35 11.07
9.34 18.31
19.34 31.41
49.33 67.50
99.33 124.34

What could be the cause if:

#® the prediction error is much too large ? (poor data fit)

#® Truly unlikely data errors

® Errors in forward theory

® Under-estimated data errors

#® the prediction error is too small ? (too good data fit)

® Truly unlikely data errors

® Over-estimated the data errors

® Fraud!

20




Solution Appraisal



Solution error
Once we have our least squares solution m; g and we know
that the data fit is acceptable, how do we find the likely errors
in the model parameters arising from errors in the data ?
mrqg =G 9d

The data set we actually observed is only one realization of
the many that could have been observed

d/ d Am LT
—d+ € . . eI DR
/ P L
Mmpg — Mg + €m ///./,}:._.:..;/f/,
I — G9d T
mLS = I/ i .'l\; 2l colutt
P~ ="_7 C
mrg+ en =G 9(d+ €) - m
The effect of adding noise to the data is to add noise to the solution
€en, = G e

The model noise is a linear combination of the data noise !
21



Solution error: Model Covariance

Multivariate Gaussian data error distribution

- 1 i }
PO = g P ¢ %

How to turn this into a probability distribution for the model errors ?

We know that the solution error is a linear combination of
the data error

€Em — G_g€

The covariance of any linear T
combination Ad of Gaussian Cov(Ad) = ACov(d)A
distributed random variables d is

So we have the covariance of the model parameters

Cum = (G 9)Cy(G DT

22




Solution error: Model Covariance

CM S (G—Q)Cd(G—Q)T Confidence

¢? = (GTcytey 16T et A

= | oy = (GTo eyt

The model covariance for a least squares problem depends
on data errors and not the data itself ! G is controlled by
the design of the experiment.

plem) = K exp {— (m — m5)TCpt (m —my)

my;,s is the least squares solution

The data error distribution gives a
model error distribution !




Solution error: Model Covariance

Cu =(GTCcla)!

For the special case of independent data errors Cy= 0'2I

Cy = o2(GTe)~?

Confidence 59%
Data errors contours

Independent data errors Correlated model errors

For linear regression problem

Cyu =

Y= —Xliw ]

N N 2
Nzizl :B? i (2121 :Bg) s Zgil T N

24



Example: Model Covariance and confidence intervals

. 1 2
For Ballistics problem Y = ma + mot; — omali

Cu = et
—1 N 1 400
Cp =5l

Elevation (m)
Lad
(]
(=]

88.563 —-33.60 —5.33
Cy=| —33.60 1544 267

—5.33 2.67 0.48

95% confidence interval for parameter i

Mirne = [10m, 100m/s, 9.8m/s%]T
— 1.96 x (Cpp)1/?

1,8

Confidence
contours

mpg = [16.4+18.4m,97.0+7.7m/s,9.4+1.4m/s°]T

26



Confidence intervals by projection
The M-dimensional confidence ellipsoid can be projected onto any subset (or
combination) of A parameters to obtain the corresponding confidence ellipsoid.

ma (m/s?) Full M-dimensional ellipsoid

A% = (m—mpg) Cyt (m — myg)

Projected v dimension ellipsoid

A? = 6m' [Cag prog]L6m’

ém’ = Projected model vector
Cum,proj = Projected covariance matrix

mg (m/s)

A2 = Chosen percentage point of
the %2, distribution

my(m)

To find the 90% confidence ellipse for il 12 12
(x,y) from a 3-D (x,y,z) ellipsoid

A =461 [=x3(90%)]

2 €
ﬁ,l r %,2 ]
"iz 032

105 " 11

10

mj (m/s?)

9

CM,proj s [

90 8 8

T
ém’' = [m1 —mpg1,mo — mpgol

85 7 7
Can you see that this procedure gives the same formula for the 1-D
case obtained previously ? 27




What if we do not know the errors on the data ?

Both Chi-square goodness of fit tests and model covariance
Calculations require knowledge of the variance of the data.

What can we do if we do not know ¢ ? Darero.

Consider the case of

Cp = o?1

i—1 =1 (N M) i—1

1 N . 1 N M 2
Yo M——QZ d; — Z G jm;j >0f=———% (di_ > Gi,jmj)
_ Calculated from least

Cy =o2(Gra)—1 " squares solution

So we can still estimate model errors using the calculated data errors
but we can no long claim anything about goodness of fit.

32



Model Resolution matrix

If we obtain a solution to an inverse problem we can
ask what its relationship is to the true solution

mest — G—gd
But we know
d = GMmyrye

and hence

Mest — G_gGmtrue = Rmyyye

The matrix R measures how "good an inverse’ G9 is.

The matrix R shows how the elements of m, are built from
linear combination of the true model, m,, .. Hence matrix R
measures the amount of blurring produced by the inverse
operator.

For the least squares solution we have

G 9= (Glepte)ytétoyt =R=

34



Data Resolution matrix

If we obtain a solution to an inverse problem we can
ask what how it compares to the data

dpre = G'Megt
But we know

Mest = G_gdobs
and hence

dpr@ = G’G_gdobs = Dd s

The matrix D is analogous to the model resolution matrix R
but measures how independently the model produced by G
can reproduce the data. If D = I then the data is fit exactly
and the prediction error d-Gm is zero.

36



Recap: Goodness of fit and model covariance

Once a best fit solution has been obtained we test goodness of fit with a
chi-square test (assuming Gaussian statistics)

N (& — M ,G;m;)?
2 =1 "“%,3"""3
Xobs Z 2

i=1 i

If the model passes the goodness of fit test we may proceed to evaluating
model covariance (if not then your data errors are probably too small)

Evaluate model covariance matrix

cu = (Grcyte)

Plot model or projections of it onto chosen subsets of parameters

2

roa—1
A" =(m—mpg) C'hy(m—mpg)

Calculate confidence intervals using projected equation

oMi— A X054 Where A2 follows a %2, distribution
28



Recap: Linear discrete inverse problems

The Least squares solution minimizes the prediction error.

p(mrs) = (d— Gmrs)TC; (d — Gmyg)

mps = (GTcyle)16cTo'd=G9d

Goodness of fit criteria tells us whether the least squares
model adequately fits the data, given the level of noise.

¢(mpg) — X}zv_M Chi-square with N-M degrees of freedom

The covariance matrix describes how noise propagates from

the data to the estimated model

cy = Greloy?t

(m —mpgs) Cyf (m — mpg) < A?

ol o xﬁl
Chi-square with M degrees of freedom

Gives confidence intervals

The resolution matrix describes how the estimated model

relates to the true model

37



Beamforming



| Beamforming frequenc
p(f)= [ pe ™" drFFT 5 TTEHHEREY

p)=[p(fe*™df  IFFT

Pressure field is a sum of plane waves

p(f.r) = [ p(f. k)™ "k
p(f.K) = [ p(f.r)e* dr

Based of the observed field p(f,r;) at discrete ranges r, the p(f,k;) is estimated
p(fk;) =Y p(f.r )™ =w'p

k
Where

e p(f.r)

g p(f1e)



Beamformine

p(f)= f pe*™dt  FFT
p)= [ p(He"df TFET

Pressure field is a sum of plane waves

B(t,m)= E p(t-T,)

= JUf pti-7, e dne  df ST e
k

= Efe—izﬂf‘b'km [f pk(t)e—iZJrﬁdt]eiznﬁdf
k

=Y [ (e df
B(f.m)= 3™ p () =w"p

Where

ei2nfrkm p(f’rl)

€i2nfrkm p(f,rN)



Aliazing

d=A/2 d>A12 d>A/2 d=A




SVD



Proof: Minimum Length solution

Constrained minimization
Min L(m)=m'm : d=Gm
Lagrange multipliers leads to unconstrained minimization of

M N
p(m,A) =mTm+AT(d—-Gm) =2 m3 + 3 Xildi = Gigmy)
= i=

0 09 _ X

E3Y =d—-—-Gm=20 — Ve i;(di — G i)
) N

—¢ =2m-G'A=0 —— ¥:2mj_z>\iGi,j
om (i i=1

:>m=%GT)\
:>d=Gm=%GGT)\
= A=2 (GG 1d

=m=Gl(GGT)d

101



Minimum Length and least squares solutions
myr = GL(GGT)1d mrg = (GTa)tald

Mest = G~ 7d

Data resolution matrix

dp""e = Ddobs
D=GGY
Minimum length Least squares
D=GGI(GGH =1 D=GGTe) 6T £1
R=G'@GceH g1 R=(G'e)l¢la=1

There is symmetry between the least squares and minimum length solutions.
Least squares complete solves the over-determined problem and has perfect
model resolution, while the minimum length solves the completely
under-determined problem and has perfect data resolution. For mix-determined
problems all solutions will be between these two extremes.

102




Singular value decomposition

SVD is a method of analyzing and solving linear discrete ill-posed problems.

At its heart is the Lanczos decomposition of the matrix G

G=Usvl

d=_G0m

G = [Ul,’l,l,Q, 5o ,’U,N]S['U]_,'UQ, i ’UM]T
N x M N x N M x M

U is an N x N ortho-normal matrix with columns that span the data space
V/ is an M x M ortho-normal matrix with columns that span the model space

S is an N x M diagonal matrix with non-negative elements — singular values

vl =vTu =1y

vl =viv =1y

Ill-posed problems arise when some of the singular values are zero

Lanczos (1977) For a discussion see Ch. 4 of Aster et al. (2004) 103




Singular value decomposition

Given G, how do we calculate the matrices U, Vand S ?

U= [ui|ug]...|uy]

G=USv?T

V = [v1]vg|... vyl

It can be shown that the columns of U are the eigenvectors of the matrix GGT

GGT’U,i ) 5732’“7; Try and prove this !

It can be shown that the columns of V are the eigenvectors of the matrix GTG

T B )
G G’UZ' = S; Uy Try and prove this !

The eigenvalues, s;?, are the square of the elements in diagonal of the

N x M matrix S.

IfFN>M sy O PG IfM>N
0 s 0 O
.0 s; 0 --- O:O - 0
o o 0 sy — | 9 s2RNCRC
S=|__ 7 ° °5p S=1 . 010 -+ O
0O 0 0 0 0O 0O O SN:O -0
00 0 O 10




Singular value decomposition

s; O --- O
0 so 0 O
.0 s; O 00 .-+ O
o 0 0 sy _ |0 s 0 010 -0
S= | 1 TE N SISl 010 --- 0
0 0 0 O 0O 0 0 syi0 --- 0
0 0 0 O

Suppose the first p are non-zero, then N x M non square matrix S S can be
written in a partitioned form

M
By convention we order
S = Sp 0 N the singular values
0 0 S§1 >822+ 2 Sp
p
510N U = [u]ug] ... |uy]
g — 0 s, 0 O
p=| . .o |P V = [vi|vo]. .. [vp]
0 0 0 s

where the submatrix s is a p x p diagonal matrix contains the non-zero
singular values

105




Singular value decomposition

If only the first p singular values are nonzero we write

Sy 0

[Vp | Vol

Up represents the first p columns of {J

Uo represents the last N-p columns of [/ — A data null space is created

Vp represents the first p columns of |/

V/, represents the last M-p columns of }/ — A model null space is created
Properties
UlU,=0 UjUp=0 ViVo=0 V) V=0
UlUp=1 UlUs=1 ViVo=1 VSVp=1I

Since the columns of V_ and U, multiply by zeros we get the
compact form for G

106



Model null space

Consider a vector made up of a linear combination of the columns of V,

M
my — Z )"ivi
1=p+1
The model m lies in the space spanned by columns of V,

M
= T, .
1=p+1
So any model of this type has no affect on the data. It lies in the

model null space ! .
P Where have we seen this before ?

Consequence: If any solution exists to the inverse problem then an
infinite number will

Assume the model mfits the data Gmy, = d \/\
N Uniqueness question
G(mls + m’U) = Gmls + Gmy of Backus and Gilbert
=dyps + 0

The data can not constrain models in the model null space

107



Example: tomography

Idealized tomographic experiment

A N 5 = =5 N § § 5§ = =
ot o2 b LS
SN I S O S 5 od = Godm
SSUUOR SR VAP || . 6
3|4 | Gi11 Gio Gi13 Gig
; G — 3 8 a3 g
3 1 2 4
4 = 8 =% pEEEEE What are the entries of G ?
SN A
3| 4
3 1 2 4

108




Example: tomography

Using rays 1-4 od = Gdm
1 0 1 o0
oo | 9 LNCHEN SR ey e B
= | o ool N
V2 0 0 V2 !
3012
T~ _ [0 3 21 3|4 |
FE=[71 2 3¢ ;
210 3 i
3 1 2 4

This has eigenvalues 6,4,2,0.

0.5 —0.5 —-0.5 0.5
0.5 0.5 0.5 0.5 Gv, =0
— = (0]
Vb 0.5 0.5 —-0.5 Vo —0.5
0.5 —0.5 0.5 —0.5

What type of change does the null space vector correspond to ?

109




Worked example: Eigenvectors

Slz=6 522=4
0.5 —-0.5 —-0.5
V|05 05 05
P~ 105 05 —-0.5
0.5 —-0.5 0.5
m m : 1111 2.,a. l1 nm
3 1 2 4 3 1 2 4
3| 4
S,2=2 S,2=0
3 1 2 4
-0.5
0.5
0.5
V, =
05 05 05 N —0.5
—05
3 1 2 4 3 1 2 4

110




Data
space
N x N

M
Model

space
MxM

Data and model null spaces

S1r Sy, s Sp 0
Up U i Data
«— that
cannot
Data be fit
null
space
V \V Models
P 0 . — that
Model cannot
null be detected
space
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