ECE295, Data Assimilation and Inverse Problems, Spring 2015

Peter Gerstoft, 534-7768, gerstoft@ucsd.edu

We meet Wednesday from 5 to 6:20pm in HHS 2305A

Text for first 5 classes: Parameter Estimation and Inverse Problems (2nd Edition) here under UCSD license
Grading S

Classes

1 April, Intro; Linear discrete Inverse problems (Aster Ch 1, 2)

8 April, SVD (Aster ch 2 and 3)

15 April, Regularization (ch 4) Numerical Example: Beamforming

22 April, Sparse methods (ch 7.2-7.3)

29 April, Sparse methods

6 May, Bayesian methods and Monte Carlo methods (ch 11) Numerical Example: Ice-flow from GPS
13 May, Introduction to sequential Bayesian methods, Kalman Filter

20 May, Data assimilation, EnKF

27 May, EnKF, Data assimilation

3 June, Markov Chain Monte Carlo, PF

Homework: You can use any programming language, matlab is the most obvious, Just email the code to me (Il dont need
anything else).

Call the files LastName_ExXX.

Homework is due 8am on Wednesday. That way we can discuss in class.

Hw 1: Download the matlab codes for the book (cd_5.3). Run the 3 examples for chapter 2. Come to class with one
qguestion about the examples. Due 8 April.



Inverse problems are everywhere

1970s

Seismic
tomography
1980s

Helioseismology
1990s

When data only indirectly constrain quantities of interest
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Thinking backwards

Most people, if you describe a train of events to them will tell you
what the result will be. There are few people, however that if you
told them a result, would be able to evolve from their own inner
consciousness what the steps were that led to that result. This

power is what | mean when | talk of reasoning backward.

Sherlock Holmes,
A Study in Scarlet,
Sir Arthur Conan Doyle (1887)



Reversing a forward problem

Measurements,
data
A forward problem
Model Observables

“~

Anmverse problem

Physical properties,
unknowns



Anatomy of an inverse problem

Hunting for gold at the beach with a gravimeter

Gravimeter

Courtesy Heiner Igel



Forward modelling example: Treasure Hunt

We have observed some values:

10, 23, 35, 45, 56 u gals

How can we relate the observed gravity [
values to the subsurface properties? i

We know how to do the forward problem:

(I)(I/') =fGIO(r')dV'

iy

This equation relates the (observed) gravitational potential to the
subsurface density.

-> given a density model we can predict the gravity field at the surface!



Treasure Hunt: Trial and error

What else do we know?

Density sand: 2.2 g/cm3
Density gold: 19.3 g/cm3

Do we know these values exactly?

Gravimeter

Where is the box with gold?

One approach is trial and (t)error forward modelling

Use the forward solution to calculate many models for a rectangular box
situated somewhere in the ground and compare the theoretical (synthetic)
data to the observations.



Treasure Hunt: model space

But ...

... we have to define plausible models
for the beach. We have to somehow
describe the model geometrically.

Gravimeter

We introduce simplifying approximations

- divide the subsurface into rectangles with variable density
- Let us assume a flat surface

X X X surface X X

sand

gold



Treasure Hunt: Non-uniqueness

Could we compute all possible models
and compare the synthetic data with the
observations?

- at every rectangle two possibilities
(sand or gold)
- 2°0 ~ 101> possible models

Age of universe ~1017s)
(Ag

Too many models!

- We have 101> possible models but only 5 observations!
- It is likely that two or more models will fit the data (maybe

Non-uniqueness is likely

Gravimeter

exactly)



Treasure hunt: a priori information

Is there anything we know about the
treasure?

How large is the box?
Is it still intact?

Has it possibly disintegrated? Grayimater
What was the shape of the box?

This is called a priori (or prior) information.
It will allow us to define plausible, possible, and unlikely models:

plausible possible unlikely
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Treasure hunt: data uncertainties

Things to consider in formulating the inverse problem

#® Do we have errors in the data ?
# Did the instruments work correctly ?
# Do we have to correct for anything?

(e.g. topography, tides, ...)

Gravimeter

® Are we using the right theory ?

#Is a 2-D approximation adequate ?
® Are there other materials present other than gold and sand ?

® Are there adjacent masses which could influence observations ?

Answering these questions often requires introducing more
simplifying assumptions and guesses.
All inferences are dependent on these assumptions. (GIGO)

11



Treasure Hunt: solutions

Models with less than 2% error.

True model Model 1 : Diff: 1.62265 Model 2 : Diff: 1.5223
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Treasure Hunt: solutions

Models with less than 1% error.

True model Model 1 : Diff: 0.577394 Model 2 : Diff: 0.905617
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N

n

(2]

8

10

2 2
4 4
6 6
8 8
10 10
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
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What we have learned from one example

Inverse problems = inference about physical &€
systems from data x Ml 5 X

- Data usually contain errors (data uncertainties
- Physical theories require approximations

- Infinitely many models will fit the data (non-uniqueness)

- Our physical theory may be inaccurate (theoretical uncertainties)
- Our forward problem may be highly nonlinear

- We always have a finite amount of data

Detailed questions are:
How accurate are our data?
How well can we solve the forward problem?

What independent information do we have on the model space

(a priori information) ? y



Estimation and Appraisal

Appraisal
problem

Estimated model m

Forward problem

Estimation
problem
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Sequential inverse problems

Ocean circulation
— Observe temperature, current flow, acoustic traveltimes...
— Predictict ocean circulation

Numerical Weather Prediction
Evolution of an earthquake
Evolution of a oilfield
Evolution of a stock market

Structural monitoring
Tracking an airplane
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Data assimilation

Data assimilation is the process by which observations are incorporated
into a computer model of a real system. Applications of data assimilation
arise in many fields of geosciences, perhaps most importantly in
weather forecasting and hydrology.

Data assimilation proceeds by analysis cycles. In each analysis cycle,
observations of the current (and possibly past) state of a system are
combined with the results from a numerical model (the forecast) to
produce an analysis, which is considered as 'the best' estimate of the
current state of the system. This is called the analysis step.

Essentially, the analysis step tries to balance the uncertainty in the data
and in the forecast. The model is then advanced in time and its result
becomes the forecast in the next analysis cycle.



Discretizing a continuous model

Often continuous functions are discretized to produce a finite set of

unknowns. This requires use of Basis functions

m(x) = § mJAJ(x)

j=1

R

"

LN

S WAV
3"; NN

All inferences we can make about the continuous function
will be influenced by the choice of basis functions. They
must suit the physics of the forward problem. They bound
the resolution of any model one gets out.
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Discretizing a continuous model

Example of Basis functions

Local support




Formulating inverse problems

Regression
d=Gm
4 T
y d:[ylay27"°7yN]
— T
y =a + bx m = [a’ b]
/} 1 Il
a
1l «
” > G = ' .2
1 LN
Discrete or continuous ?
Linear or nonlinear ? Why ?
What are the data ?
What are the model parameters ? _
Unique or non-unique solution ? y = at bX
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Formulating inverse problems

Ballistic trajectory

: >

Discrete or continuous ?

Linear or nonlinear ? Why ?

What are the data ?

What are the model parameters ?
Unique or non-unique solution ?

d=Gm
d= [y17y27"'7yN]T

m = [m17 ma2, m3]T

1 t1  —1/2t%
O — 1 t? _1/.2155

1 ty —1/2t3,

Yy = mi + mot — §m3t2
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Recap: Characterizing inverse problems

Inverse problems can be continuous or discrete

Continuous problems are often discretized by choosing a set of basis
functions and projecting the continuous function on them.

The forward problem is to take a model and predict observables that are
compared to actual data. Contains the Physics of the problem. This often
involves a mathematical model which is an approximation to the real
physics.

The inverse problem is to take the data and constrain the model in some
way.

We may want to build a model or we may wish to ask a less precise
guestion of the data !



Over-determined: Linear discrete inverse problem

To find the best fit model we can
minimize the prediction error of

the solution

ri(m) = yf** — y"*(m)

r=d—-Gm

But the data contain errors. Let’s assume these are independent and
normally distributed, then we weight each residual inversely by the
standard deviation of the corresponding (known) error distribution.

We can obtain a least squares solution by minimizing the weighted
prediction error of the solution.

N /..o0b 2
(yz m yfre(m)) — TTong
O

¢(m) = )

=1 t

Cy = diag [0'%,0'%, . ,a%]



Over-determined: Linear discrete inverse problem

. i C ith
We seek the model vector m which minimizes i S AL

H(m) = ;rToglr — ;(d - Gm)'c;(d - Gm) 7

Note that this is a quadratic function of the model vector.

Solution: Differentiate with respect to m and solve for the
model vector which gives a zero gradient in ¢,(m)

This gives...

Vo(m) = -GTc; (d - Gm) =0

»>m=(GTc;'e)"1¢Tc;'d

This is the least-squares solution.

A solution to the normal equations:

GT'em =6Td




Over-determined: Linear discrete inverse problem

How does the Least-squares solution compare to the standard
equations of linear regression ?

m= (GTc;'e)y ¢’e, d
Given N data y; with independent normally distributed errors

and standard deviations o; what are the expressions for the
model parameters m = [a,b]T ?

1 = :;
am= |2 7= |[m] | 7| -d
Dag |2 [

:J:Nd

_l N 2?;1%']_1[ AT ]

N N 2 N
N N N
1 [ Ei:l 3-‘;? _2,;21 xi ] l E,’:l Yi ]
= 2
N 2 N
NYiz1%f — (2::1 -"’z‘) —N = N >, T



Linear discrete inverse problem: Least squares

mys = (GToyle)y t6Tey'd =G 9d

What happens in the under and even-determined cases ?

m

1 IARE —Eﬁil"’ﬂ \ PPARET

i 2
NEl a2 - () | -sNys N Sz

® Under-determined, N=1:

Matrix has a zero determinant
and a zero eigenvalue
an infinite number of solutions exist

Y

® Even-determined, N=2: A

yi—w I’ .
m = [m,mol", mo= [— » ML = Y1 M2F]. /

L1 — X2 I
/y' y=a+ bx

Y

\r=d—-—Gm =20

B4

Prediction error is zero !




Example: Over-determined, Linear discrete inverse

problem
. 1 5
The Ballistics example yi = ma + mat; — 5m3ti
Given data and noise Calculate G
t ¥ -
1 109:3827 1 & —a729
2 187:5385 —1/212
3 267:5319 1 1 G = 1 t_z 1/_2t2
s 3z Gy = 5l P :
5 386:0535 o 1 ty —1/2t3
6 428:4271 o
7 4521644
8 498:1461 mrg = (GTCd_lG)_lGTCEId
9 512:3499
10 512:9753
GO0,
o 2T
s = [16.4m,97.0m/s,9.4m /5] 500
__400 r'a -
- 21T | < v
Mirye = [10m,100m /s, 9.8m /5] § 200
ﬂ200 ,ﬁ/
Is the data fit good enough ? e *
ct; z 0 12

i}
Time (5)

And how to errors in data propagate
into the solution ?




The two questions in parameter
estimation

We have our fitted model parameters

...but we are far from finished !

We need to:
® Assess the quality of the data fit.

Goodness of fit: Does the model fit the data to within
the statistical uncertainty of the noise ?

® Estimate how errors in the data propagate
into the model

What are the errors on the model parameters ?



Goodness of fit

Once we have our least squares solution m s how do we know
whether the fit is good enough given the errors in the data ?

A

Use the prediction error at the least squares solution !

1 N . —YM G am; %
P(mrg) = E(d—GmLs)TCﬂ?l(d—GmLs) — Z (d' 2 i=1 ij)

i—1

4

If data errors are Gaussian this as a chi-square statistic xﬁbs
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