Singular value decomposition

When light passes through a thin slit it is diffracted. The distribution of light intensity as a function of incidence angle θ is represented by $m(\theta)$. After passing through the slit it becomes $d(\phi)$, where ϕ is the angle as defined in the figure. $m(\theta)$ and $d(\phi)$ are related by the expression

$$
\begin{equation*}
\mathrm{d}(\phi)=\int_{-\pi / 2}^{\pi / 2}(\cos (\phi)+\cos (\theta))^{2}\left(\frac{\sin (\pi(\sin (\phi)+\sin (\theta)))}{\pi(\sin (\phi)+\sin (\theta))}\right)^{2} m(\theta) \mathrm{d} \theta \tag{1}
\end{equation*}
$$

Here the data are measured intensity $\mathrm{d}(\phi)$ at N equal intervals, $\mathrm{d}\left(\phi_{i}\right)=\mathrm{d}_{\mathrm{i}},(\mathfrak{i}=1, \ldots, \mathrm{~N})$ where $-\frac{\pi}{2}<=\phi_{i}<=\frac{\pi}{2}$, and the model is the incident intensity $m(\theta)$ discretized over the same angular intervals, $m\left(\theta_{j}\right)=m_{j},(j=1, \ldots, N)$, which leads to a discrete linear system of $\mathrm{N} \times \mathrm{N}$ equations, $\mathbf{d}=\mathrm{Gm}$, where

$$
\begin{equation*}
\mathrm{G}_{\mathrm{i}, \mathrm{j}}=\Delta \phi\left(\cos \left(\phi_{\mathrm{i}}\right)+\cos \left(\theta_{\mathrm{j}}\right)\right)^{2}\left(\frac{\sin \left(\pi\left(\sin \left(\phi_{\mathrm{i}}\right)+\sin \left(\theta_{\mathrm{j}}\right)\right)\right)}{\pi\left(\sin \left(\phi_{\mathrm{i}}\right)+\sin \left(\theta_{\mathrm{j}}\right)\right)}\right)^{2} \tag{2}
\end{equation*}
$$

This results in a severely ill-posed inverse problem. MATLAB routine $[\mathrm{G}, \mathrm{m}, \mathrm{d}]=\operatorname{shaw}(20)$ computes the G matrix along with a sample model and data for this problem with $\mathrm{N}=20$.

1. Calculate the singular values of the G matrix. Plot singular values s_{i} as a function of index i on a semi-log plot. What do you notice about the shape?
[You may find routine svd helpful here $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{G})$. Note that eigenvalues are along the diagonal of matrix S (diag (S)). and a semilog plot is achieved with routine semilogy.]
2. Use MATLAB commands to get the rank and condition number of G. What do these terms mean? Can you see how they are affect in the eigenvalue spectrum?
3. Plot the eigenvector corresponding to the smallest non zero eigenvalue (i.e. s_{p}, where $\mathrm{p}=$ rank of G$)$. What do you notice about its shape ?
4. Plot the eigenvector corresponding to the largest and 5th largest eigenvalue. Look at these
together with your previous plot. How does the shape changes with eigenvalue?
5. Generate an input spike model \mathbf{m} with zeros everywhere and the 10 th element equal to 1 . Plot this model, calculate the corresponding data using $\mathbf{d}=\mathrm{Gm}$ and plot this. [You may find routine $\operatorname{zeros}(20,1)$ useful here.]
6. Apply the generalized inverse $\mathrm{G}^{\dagger} \mathbf{d}=\mathrm{V} \mathrm{S}^{-1} \mathrm{U}^{\mathrm{T}} \mathbf{d}$ to obtain solutions for different values of p. Choose the highest p and lowest p and compare the models. How good is the recovery? [Note that $\mathrm{p}=10$; $\mathrm{Up}=\mathrm{U}(:, 1: \mathrm{p})$; will set Up to the matrix containing the first p columns of U.]
7. Now add 20 realizations of normal random noise with zero mean and standard deviation $\sigma=$ 10^{-6} to the data vector. Plot the noisy data and the no noise data on the same figure. Do you see much difference? [You may find a command of this form useful here
```
dn=spikedata+1.0e-6*randn(size(spikedata));]
```

8. Calculate the solution for the noisy data, using the full rank of the generalized inverse, i.e. $p=\operatorname{rank}(G)$. Plot the solution. How does it compare to the true solution? What has happened?
9. Calculate a solution by truncating the SVD to a smaller number of singular values and find a value for p which you think best recovers the true spike model. By reducing p what have you managed to do to the inverse problem? What has been sacrificed to achieve this.
